forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
205 lines
5.2 KiB
Python
205 lines
5.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
|
|
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
from llama_stack.apis.common.content_types import URL
|
|
|
|
from llama_stack.apis.common.job_types import JobStatus
|
|
from llama_stack.apis.common.training_types import Checkpoint
|
|
|
|
|
|
@json_schema_type
|
|
class OptimizerType(Enum):
|
|
adam = "adam"
|
|
adamw = "adamw"
|
|
sgd = "sgd"
|
|
|
|
|
|
@json_schema_type
|
|
class DataConfig(BaseModel):
|
|
dataset_id: str
|
|
batch_size: int
|
|
shuffle: bool
|
|
validation_dataset_id: Optional[str] = None
|
|
packed: Optional[bool] = False
|
|
train_on_input: Optional[bool] = False
|
|
|
|
|
|
@json_schema_type
|
|
class OptimizerConfig(BaseModel):
|
|
optimizer_type: OptimizerType
|
|
lr: float
|
|
weight_decay: float
|
|
num_warmup_steps: int
|
|
|
|
|
|
@json_schema_type
|
|
class EfficiencyConfig(BaseModel):
|
|
enable_activation_checkpointing: Optional[bool] = False
|
|
enable_activation_offloading: Optional[bool] = False
|
|
memory_efficient_fsdp_wrap: Optional[bool] = False
|
|
fsdp_cpu_offload: Optional[bool] = False
|
|
|
|
|
|
@json_schema_type
|
|
class TrainingConfig(BaseModel):
|
|
n_epochs: int
|
|
max_steps_per_epoch: int
|
|
gradient_accumulation_steps: int
|
|
data_config: DataConfig
|
|
optimizer_config: OptimizerConfig
|
|
efficiency_config: Optional[EfficiencyConfig] = None
|
|
dtype: Optional[str] = "bf16"
|
|
|
|
|
|
@json_schema_type
|
|
class LoraFinetuningConfig(BaseModel):
|
|
type: Literal["LoRA"] = "LoRA"
|
|
lora_attn_modules: List[str]
|
|
apply_lora_to_mlp: bool
|
|
apply_lora_to_output: bool
|
|
rank: int
|
|
alpha: int
|
|
use_dora: Optional[bool] = False
|
|
quantize_base: Optional[bool] = False
|
|
|
|
|
|
@json_schema_type
|
|
class QATFinetuningConfig(BaseModel):
|
|
type: Literal["QAT"] = "QAT"
|
|
quantizer_name: str
|
|
group_size: int
|
|
|
|
|
|
AlgorithmConfig = Annotated[
|
|
Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")
|
|
]
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobLogStream(BaseModel):
|
|
"""Stream of logs from a finetuning job."""
|
|
|
|
job_uuid: str
|
|
log_lines: List[str]
|
|
|
|
|
|
@json_schema_type
|
|
class RLHFAlgorithm(Enum):
|
|
dpo = "dpo"
|
|
|
|
|
|
@json_schema_type
|
|
class DPOAlignmentConfig(BaseModel):
|
|
reward_scale: float
|
|
reward_clip: float
|
|
epsilon: float
|
|
gamma: float
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingRLHFRequest(BaseModel):
|
|
"""Request to finetune a model."""
|
|
|
|
job_uuid: str
|
|
|
|
finetuned_model: URL
|
|
|
|
dataset_id: str
|
|
validation_dataset_id: str
|
|
|
|
algorithm: RLHFAlgorithm
|
|
algorithm_config: DPOAlignmentConfig
|
|
|
|
optimizer_config: OptimizerConfig
|
|
training_config: TrainingConfig
|
|
|
|
# TODO: define these
|
|
hyperparam_search_config: Dict[str, Any]
|
|
logger_config: Dict[str, Any]
|
|
|
|
|
|
class PostTrainingJob(BaseModel):
|
|
job_uuid: str
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobStatusResponse(BaseModel):
|
|
"""Status of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
status: JobStatus
|
|
|
|
scheduled_at: Optional[datetime] = None
|
|
started_at: Optional[datetime] = None
|
|
completed_at: Optional[datetime] = None
|
|
|
|
resources_allocated: Optional[Dict[str, Any]] = None
|
|
|
|
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobArtifactsResponse(BaseModel):
|
|
"""Artifacts of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
|
|
|
# TODO(ashwin): metrics, evals
|
|
|
|
|
|
class PostTraining(Protocol):
|
|
@webmethod(route="/post-training/supervised-fine-tune", method="POST")
|
|
async def supervised_fine_tune(
|
|
self,
|
|
job_uuid: str,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: Dict[str, Any],
|
|
logger_config: Dict[str, Any],
|
|
model: str = Field(
|
|
default="Llama3.2-3B-Instruct",
|
|
description="Model descriptor from `llama model list`",
|
|
),
|
|
checkpoint_dir: Optional[str] = None,
|
|
algorithm_config: Optional[AlgorithmConfig] = None,
|
|
) -> PostTrainingJob: ...
|
|
|
|
@webmethod(route="/post-training/preference-optimize", method="POST")
|
|
async def preference_optimize(
|
|
self,
|
|
job_uuid: str,
|
|
finetuned_model: str,
|
|
algorithm_config: DPOAlignmentConfig,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: Dict[str, Any],
|
|
logger_config: Dict[str, Any],
|
|
) -> PostTrainingJob: ...
|
|
|
|
@webmethod(route="/post-training/jobs", method="GET")
|
|
async def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
|
|
|
@webmethod(route="/post-training/job/status", method="GET")
|
|
async def get_training_job_status(
|
|
self, job_uuid: str
|
|
) -> Optional[PostTrainingJobStatusResponse]: ...
|
|
|
|
@webmethod(route="/post-training/job/cancel", method="POST")
|
|
async def cancel_training_job(self, job_uuid: str) -> None: ...
|
|
|
|
@webmethod(route="/post-training/job/artifacts", method="GET")
|
|
async def get_training_job_artifacts(
|
|
self, job_uuid: str
|
|
) -> Optional[PostTrainingJobArtifactsResponse]: ...
|