forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
423 lines
12 KiB
Python
423 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, AsyncGenerator, Dict, List, Optional
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
|
|
from llama_stack.apis.eval import (
|
|
AppEvalTaskConfig,
|
|
Eval,
|
|
EvalTaskConfig,
|
|
EvaluateResponse,
|
|
Job,
|
|
JobStatus,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
EmbeddingsResponse,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
ToolChoice,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.memory import Memory, MemoryBankDocument, QueryDocumentsResponse
|
|
from llama_stack.apis.memory_banks.memory_banks import BankParams
|
|
from llama_stack.apis.models import ModelType
|
|
from llama_stack.apis.safety import RunShieldResponse, Safety
|
|
from llama_stack.apis.scoring import (
|
|
ScoreBatchResponse,
|
|
ScoreResponse,
|
|
Scoring,
|
|
ScoringFnParams,
|
|
)
|
|
from llama_stack.apis.shields import Shield
|
|
from llama_stack.apis.tools import Tool, ToolGroupDef, ToolRuntime
|
|
from llama_stack.providers.datatypes import RoutingTable
|
|
|
|
|
|
class MemoryRouter(Memory):
|
|
"""Routes to an provider based on the memory bank identifier"""
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_memory_bank(
|
|
self,
|
|
memory_bank_id: str,
|
|
params: BankParams,
|
|
provider_id: Optional[str] = None,
|
|
provider_memorybank_id: Optional[str] = None,
|
|
) -> None:
|
|
await self.routing_table.register_memory_bank(
|
|
memory_bank_id,
|
|
params,
|
|
provider_id,
|
|
provider_memorybank_id,
|
|
)
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
return await self.routing_table.get_provider_impl(bank_id).insert_documents(
|
|
bank_id, documents, ttl_seconds
|
|
)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedContent,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
return await self.routing_table.get_provider_impl(bank_id).query_documents(
|
|
bank_id, query, params
|
|
)
|
|
|
|
|
|
class InferenceRouter(Inference):
|
|
"""Routes to an provider based on the model"""
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_model(
|
|
self,
|
|
model_id: str,
|
|
provider_model_id: Optional[str] = None,
|
|
provider_id: Optional[str] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
model_type: Optional[ModelType] = None,
|
|
) -> None:
|
|
await self.routing_table.register_model(
|
|
model_id, provider_model_id, provider_id, metadata, model_type
|
|
)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.embedding:
|
|
raise ValueError(
|
|
f"Model '{model_id}' is an embedding model and does not support chat completions"
|
|
)
|
|
params = dict(
|
|
model_id=model_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
provider = self.routing_table.get_provider_impl(model_id)
|
|
if stream:
|
|
return (chunk async for chunk in await provider.chat_completion(**params))
|
|
else:
|
|
return await provider.chat_completion(**params)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.embedding:
|
|
raise ValueError(
|
|
f"Model '{model_id}' is an embedding model and does not support chat completions"
|
|
)
|
|
provider = self.routing_table.get_provider_impl(model_id)
|
|
params = dict(
|
|
model_id=model_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return (chunk async for chunk in await provider.completion(**params))
|
|
else:
|
|
return await provider.completion(**params)
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.llm:
|
|
raise ValueError(
|
|
f"Model '{model_id}' is an LLM model and does not support embeddings"
|
|
)
|
|
return await self.routing_table.get_provider_impl(model_id).embeddings(
|
|
model_id=model_id,
|
|
contents=contents,
|
|
)
|
|
|
|
|
|
class SafetyRouter(Safety):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_shield(
|
|
self,
|
|
shield_id: str,
|
|
provider_shield_id: Optional[str] = None,
|
|
provider_id: Optional[str] = None,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> Shield:
|
|
return await self.routing_table.register_shield(
|
|
shield_id, provider_shield_id, provider_id, params
|
|
)
|
|
|
|
async def run_shield(
|
|
self,
|
|
shield_id: str,
|
|
messages: List[Message],
|
|
params: Dict[str, Any] = None,
|
|
) -> RunShieldResponse:
|
|
return await self.routing_table.get_provider_impl(shield_id).run_shield(
|
|
shield_id=shield_id,
|
|
messages=messages,
|
|
params=params,
|
|
)
|
|
|
|
|
|
class DatasetIORouter(DatasetIO):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def get_rows_paginated(
|
|
self,
|
|
dataset_id: str,
|
|
rows_in_page: int,
|
|
page_token: Optional[str] = None,
|
|
filter_condition: Optional[str] = None,
|
|
) -> PaginatedRowsResult:
|
|
return await self.routing_table.get_provider_impl(
|
|
dataset_id
|
|
).get_rows_paginated(
|
|
dataset_id=dataset_id,
|
|
rows_in_page=rows_in_page,
|
|
page_token=page_token,
|
|
filter_condition=filter_condition,
|
|
)
|
|
|
|
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
|
return await self.routing_table.get_provider_impl(dataset_id).append_rows(
|
|
dataset_id=dataset_id,
|
|
rows=rows,
|
|
)
|
|
|
|
|
|
class ScoringRouter(Scoring):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def score_batch(
|
|
self,
|
|
dataset_id: str,
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
|
save_results_dataset: bool = False,
|
|
) -> ScoreBatchResponse:
|
|
res = {}
|
|
for fn_identifier in scoring_functions.keys():
|
|
score_response = await self.routing_table.get_provider_impl(
|
|
fn_identifier
|
|
).score_batch(
|
|
dataset_id=dataset_id,
|
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
|
)
|
|
res.update(score_response.results)
|
|
|
|
if save_results_dataset:
|
|
raise NotImplementedError("Save results dataset not implemented yet")
|
|
|
|
return ScoreBatchResponse(
|
|
results=res,
|
|
)
|
|
|
|
async def score(
|
|
self,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
|
) -> ScoreResponse:
|
|
res = {}
|
|
# look up and map each scoring function to its provider impl
|
|
for fn_identifier in scoring_functions.keys():
|
|
score_response = await self.routing_table.get_provider_impl(
|
|
fn_identifier
|
|
).score(
|
|
input_rows=input_rows,
|
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
|
)
|
|
res.update(score_response.results)
|
|
|
|
return ScoreResponse(results=res)
|
|
|
|
|
|
class EvalRouter(Eval):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def run_eval(
|
|
self,
|
|
task_id: str,
|
|
task_config: AppEvalTaskConfig,
|
|
) -> Job:
|
|
return await self.routing_table.get_provider_impl(task_id).run_eval(
|
|
task_id=task_id,
|
|
task_config=task_config,
|
|
)
|
|
|
|
async def evaluate_rows(
|
|
self,
|
|
task_id: str,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: List[str],
|
|
task_config: EvalTaskConfig,
|
|
) -> EvaluateResponse:
|
|
return await self.routing_table.get_provider_impl(task_id).evaluate_rows(
|
|
task_id=task_id,
|
|
input_rows=input_rows,
|
|
scoring_functions=scoring_functions,
|
|
task_config=task_config,
|
|
)
|
|
|
|
async def job_status(
|
|
self,
|
|
task_id: str,
|
|
job_id: str,
|
|
) -> Optional[JobStatus]:
|
|
return await self.routing_table.get_provider_impl(task_id).job_status(
|
|
task_id, job_id
|
|
)
|
|
|
|
async def job_cancel(
|
|
self,
|
|
task_id: str,
|
|
job_id: str,
|
|
) -> None:
|
|
await self.routing_table.get_provider_impl(task_id).job_cancel(
|
|
task_id,
|
|
job_id,
|
|
)
|
|
|
|
async def job_result(
|
|
self,
|
|
task_id: str,
|
|
job_id: str,
|
|
) -> EvaluateResponse:
|
|
return await self.routing_table.get_provider_impl(task_id).job_result(
|
|
task_id,
|
|
job_id,
|
|
)
|
|
|
|
|
|
class ToolRuntimeRouter(ToolRuntime):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def invoke_tool(self, tool_name: str, args: Dict[str, Any]) -> Any:
|
|
return await self.routing_table.get_provider_impl(tool_name).invoke_tool(
|
|
tool_name=tool_name,
|
|
args=args,
|
|
)
|
|
|
|
async def discover_tools(self, tool_group: ToolGroupDef) -> List[Tool]:
|
|
return await self.routing_table.get_provider_impl(
|
|
tool_group.name
|
|
).discover_tools(tool_group)
|