llama-stack/llama_stack/providers/remote/memory/qdrant/qdrant.py
Xi Yan 3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00

174 lines
5.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import uuid
from typing import Any, Dict, List, Optional
from numpy.typing import NDArray
from qdrant_client import AsyncQdrantClient, models
from qdrant_client.models import PointStruct
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.memory import (
Chunk,
Memory,
MemoryBankDocument,
QueryDocumentsResponse,
)
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.remote.memory.qdrant.config import QdrantConfig
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
)
log = logging.getLogger(__name__)
CHUNK_ID_KEY = "_chunk_id"
def convert_id(_id: str) -> str:
"""
Converts any string into a UUID string based on a seed.
Qdrant accepts UUID strings and unsigned integers as point ID.
We use a seed to convert each string into a UUID string deterministically.
This allows us to overwrite the same point with the original ID.
"""
return str(uuid.uuid5(uuid.NAMESPACE_DNS, _id))
class QdrantIndex(EmbeddingIndex):
def __init__(self, client: AsyncQdrantClient, collection_name: str):
self.client = client
self.collection_name = collection_name
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
assert len(chunks) == len(
embeddings
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
if not await self.client.collection_exists(self.collection_name):
await self.client.create_collection(
self.collection_name,
vectors_config=models.VectorParams(
size=len(embeddings[0]), distance=models.Distance.COSINE
),
)
points = []
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
chunk_id = f"{chunk.document_id}:chunk-{i}"
points.append(
PointStruct(
id=convert_id(chunk_id),
vector=embedding,
payload={"chunk_content": chunk.model_dump()}
| {CHUNK_ID_KEY: chunk_id},
)
)
await self.client.upsert(collection_name=self.collection_name, points=points)
async def query(
self, embedding: NDArray, k: int, score_threshold: float
) -> QueryDocumentsResponse:
results = (
await self.client.query_points(
collection_name=self.collection_name,
query=embedding.tolist(),
limit=k,
with_payload=True,
score_threshold=score_threshold,
)
).points
chunks, scores = [], []
for point in results:
assert isinstance(point, models.ScoredPoint)
assert point.payload is not None
try:
chunk = Chunk(**point.payload["chunk_content"])
except Exception:
log.exception("Failed to parse chunk")
continue
chunks.append(chunk)
scores.append(point.score)
return QueryDocumentsResponse(chunks=chunks, scores=scores)
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
self.config = config
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
self.cache = {}
self.inference_api = inference_api
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
self.client.close()
async def register_memory_bank(
self,
memory_bank: MemoryBank,
) -> None:
assert (
memory_bank.memory_bank_type == MemoryBankType.vector
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
index = BankWithIndex(
bank=memory_bank,
index=QdrantIndex(self.client, memory_bank.identifier),
inference_api=self.inference_api,
)
self.cache[memory_bank.identifier] = index
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
if bank_id in self.cache:
return self.cache[bank_id]
bank = await self.memory_bank_store.get_memory_bank(bank_id)
if not bank:
raise ValueError(f"Bank {bank_id} not found")
index = BankWithIndex(
bank=bank,
index=QdrantIndex(client=self.client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index
async def insert_documents(
self,
bank_id: str,
documents: List[MemoryBankDocument],
ttl_seconds: Optional[int] = None,
) -> None:
index = await self._get_and_cache_bank_index(bank_id)
if not index:
raise ValueError(f"Bank {bank_id} not found")
await index.insert_documents(documents)
async def query_documents(
self,
bank_id: str,
query: InterleavedContent,
params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse:
index = await self._get_and_cache_bank_index(bank_id)
if not index:
raise ValueError(f"Bank {bank_id} not found")
return await index.query_documents(query, params)