forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
101 lines
3.5 KiB
Python
101 lines
3.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import pytest
|
|
|
|
from llama_stack.apis.common.type_system import JobStatus
|
|
from llama_stack.apis.post_training import (
|
|
Checkpoint,
|
|
DataConfig,
|
|
LoraFinetuningConfig,
|
|
OptimizerConfig,
|
|
PostTrainingJob,
|
|
PostTrainingJobArtifactsResponse,
|
|
PostTrainingJobStatusResponse,
|
|
TrainingConfig,
|
|
)
|
|
|
|
# How to run this test:
|
|
#
|
|
# pytest llama_stack/providers/tests/post_training/test_post_training.py
|
|
# -m "torchtune_post_training_huggingface_datasetio"
|
|
# -v -s --tb=short --disable-warnings
|
|
|
|
|
|
class TestPostTraining:
|
|
@pytest.mark.asyncio
|
|
async def test_supervised_fine_tune(self, post_training_stack):
|
|
algorithm_config = LoraFinetuningConfig(
|
|
type="LoRA",
|
|
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
|
|
apply_lora_to_mlp=True,
|
|
apply_lora_to_output=False,
|
|
rank=8,
|
|
alpha=16,
|
|
)
|
|
|
|
data_config = DataConfig(
|
|
dataset_id="alpaca",
|
|
batch_size=1,
|
|
shuffle=False,
|
|
)
|
|
|
|
optimizer_config = OptimizerConfig(
|
|
optimizer_type="adamw",
|
|
lr=3e-4,
|
|
lr_min=3e-5,
|
|
weight_decay=0.1,
|
|
num_warmup_steps=100,
|
|
)
|
|
|
|
training_config = TrainingConfig(
|
|
n_epochs=1,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
max_steps_per_epoch=1,
|
|
gradient_accumulation_steps=1,
|
|
)
|
|
post_training_impl = post_training_stack
|
|
response = await post_training_impl.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="Llama3.2-3B-Instruct",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
hyperparam_search_config={},
|
|
logger_config={},
|
|
checkpoint_dir="null",
|
|
)
|
|
assert isinstance(response, PostTrainingJob)
|
|
assert response.job_uuid == "1234"
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_training_jobs(self, post_training_stack):
|
|
post_training_impl = post_training_stack
|
|
jobs_list = await post_training_impl.get_training_jobs()
|
|
assert isinstance(jobs_list, List)
|
|
assert jobs_list[0].job_uuid == "1234"
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_training_job_status(self, post_training_stack):
|
|
post_training_impl = post_training_stack
|
|
job_status = await post_training_impl.get_training_job_status("1234")
|
|
assert isinstance(job_status, PostTrainingJobStatusResponse)
|
|
assert job_status.job_uuid == "1234"
|
|
assert job_status.status == JobStatus.completed
|
|
assert isinstance(job_status.checkpoints[0], Checkpoint)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_training_job_artifacts(self, post_training_stack):
|
|
post_training_impl = post_training_stack
|
|
job_artifacts = await post_training_impl.get_training_job_artifacts("1234")
|
|
assert isinstance(job_artifacts, PostTrainingJobArtifactsResponse)
|
|
assert job_artifacts.job_uuid == "1234"
|
|
assert isinstance(job_artifacts.checkpoints[0], Checkpoint)
|
|
assert job_artifacts.checkpoints[0].identifier == "Llama3.2-3B-Instruct-sft-0"
|
|
assert job_artifacts.checkpoints[0].epoch == 0
|
|
assert (
|
|
"/.llama/checkpoints/Llama3.2-3B-Instruct-sft-0"
|
|
in job_artifacts.checkpoints[0].path
|
|
)
|