llama-stack/llama_stack/templates/nvidia/nvidia.py
Dinesh Yeduguru 3d4c53dfec
add mcp runtime as default to all providers (#816)
# What does this PR do?

This is needed to have the notebook work with MCP
2025-01-17 16:40:58 -08:00

95 lines
3.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_models.sku_list import all_registered_models
from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupInput
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.nvidia.nvidia import _MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::nvidia"],
"memory": ["inline::faiss"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::memory-runtime",
"remote::model-context-protocol",
],
}
inference_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NVIDIAConfig.sample_run_config(),
)
core_model_to_hf_repo = {
m.descriptor(): m.huggingface_repo for m in all_registered_models()
}
default_models = [
ModelInput(
model_id=core_model_to_hf_repo[m.llama_model],
provider_model_id=m.provider_model_id,
provider_id="nvidia",
)
for m in _MODEL_ALIASES
]
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::memory",
provider_id="memory-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
return DistributionTemplate(
name="nvidia",
distro_type="remote_hosted",
description="Use NVIDIA NIM for running LLM inference",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=default_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
},
default_models=default_models,
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"NVIDIA_API_KEY": (
"",
"NVIDIA API Key",
),
},
)