forked from phoenix-oss/llama-stack-mirror
## Test Plan ``` pytest -s -v 'tests/verifications/openai_api/test_responses.py' \ --provider=stack:together --model meta-llama/Llama-4-Scout-17B-16E-Instruct ```
110 lines
3.8 KiB
Python
110 lines
3.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from contextlib import asynccontextmanager
|
|
from typing import Any
|
|
|
|
try:
|
|
# for python < 3.11
|
|
import exceptiongroup
|
|
|
|
BaseExceptionGroup = exceptiongroup.BaseExceptionGroup
|
|
except ImportError:
|
|
pass
|
|
|
|
import httpx
|
|
from mcp import ClientSession
|
|
from mcp import types as mcp_types
|
|
from mcp.client.sse import sse_client
|
|
|
|
from llama_stack.apis.common.content_types import ImageContentItem, InterleavedContentItem, TextContentItem
|
|
from llama_stack.apis.tools import (
|
|
ListToolDefsResponse,
|
|
ToolDef,
|
|
ToolInvocationResult,
|
|
ToolParameter,
|
|
)
|
|
from llama_stack.distribution.datatypes import AuthenticationRequiredError
|
|
from llama_stack.log import get_logger
|
|
|
|
logger = get_logger(__name__, category="tools")
|
|
|
|
|
|
@asynccontextmanager
|
|
async def sse_client_wrapper(endpoint: str, headers: dict[str, str]):
|
|
try:
|
|
async with sse_client(endpoint, headers=headers) as streams:
|
|
async with ClientSession(*streams) as session:
|
|
await session.initialize()
|
|
yield session
|
|
except BaseException as e:
|
|
if isinstance(e, BaseExceptionGroup):
|
|
for exc in e.exceptions:
|
|
if isinstance(exc, httpx.HTTPStatusError) and exc.response.status_code == 401:
|
|
raise AuthenticationRequiredError(exc) from exc
|
|
elif isinstance(e, httpx.HTTPStatusError) and e.response.status_code == 401:
|
|
raise AuthenticationRequiredError(e) from e
|
|
|
|
raise
|
|
|
|
|
|
def convert_header_list_to_dict(header_list: list[str]) -> dict[str, str]:
|
|
headers = {}
|
|
for header in header_list:
|
|
parts = header.split(":")
|
|
if len(parts) == 2:
|
|
k, v = parts
|
|
headers[k.strip()] = v.strip()
|
|
return headers
|
|
|
|
|
|
async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefsResponse:
|
|
tools = []
|
|
async with sse_client_wrapper(endpoint, headers) as session:
|
|
tools_result = await session.list_tools()
|
|
for tool in tools_result.tools:
|
|
parameters = []
|
|
for param_name, param_schema in tool.inputSchema.get("properties", {}).items():
|
|
parameters.append(
|
|
ToolParameter(
|
|
name=param_name,
|
|
parameter_type=param_schema.get("type", "string"),
|
|
description=param_schema.get("description", ""),
|
|
)
|
|
)
|
|
tools.append(
|
|
ToolDef(
|
|
name=tool.name,
|
|
description=tool.description,
|
|
parameters=parameters,
|
|
metadata={
|
|
"endpoint": endpoint,
|
|
},
|
|
)
|
|
)
|
|
return ListToolDefsResponse(data=tools)
|
|
|
|
|
|
async def invoke_mcp_tool(
|
|
endpoint: str, headers: dict[str, str], tool_name: str, kwargs: dict[str, Any]
|
|
) -> ToolInvocationResult:
|
|
async with sse_client_wrapper(endpoint, headers) as session:
|
|
result = await session.call_tool(tool_name, kwargs)
|
|
|
|
content: list[InterleavedContentItem] = []
|
|
for item in result.content:
|
|
if isinstance(item, mcp_types.TextContent):
|
|
content.append(TextContentItem(text=item.text))
|
|
elif isinstance(item, mcp_types.ImageContent):
|
|
content.append(ImageContentItem(image=item.data))
|
|
elif isinstance(item, mcp_types.EmbeddedResource):
|
|
logger.warning(f"EmbeddedResource is not supported: {item}")
|
|
else:
|
|
raise ValueError(f"Unknown content type: {type(item)}")
|
|
return ToolInvocationResult(
|
|
content=content,
|
|
error_code=1 if result.isError else 0,
|
|
)
|