llama-stack/llama_stack/providers/tests/inference/test_text_inference.py
Matthew Farrellee 435f34b05e
reduce the accuracy requirements to pass the chat completion structured output test (#522)
i find `test_structured_output` to be flakey. it's both a functionality
and accuracy test -

```
        answer = AnswerFormat.model_validate_json(response.completion_message.content)
        assert answer.first_name == "Michael"
        assert answer.last_name == "Jordan"
        assert answer.year_of_birth == 1963
        assert answer.num_seasons_in_nba == 15
```

it's an accuracy test because it checks the value of first/last name,
birth year, and num seasons.

i find that -
- llama-3.1-8b-instruct and llama-3.2-3b-instruct pass the functionality
portion
- llama-3.2-3b-instruct consistently fails the accuracy portion
(thinking MJ was in the NBA for 14 seasons)
 - llama-3.1-8b-instruct occasionally fails the accuracy portion

suggestions (not mutually exclusive) -
1. turn the test into functionality only, skip the value checks
2. split the test into a functionality version and an xfail accuracy
version
3. add context to the prompt so the llm can answer without accessing
embedded memory

# What does this PR do?

implements option (3) by adding context to the system prompt.


## Test Plan


`pytest -s -v ... llama_stack/providers/tests/inference/ ... -k
structured_output`


## Before submitting

- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-12-03 02:55:14 -08:00

386 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from pydantic import BaseModel, ValidationError
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.datatypes import * # noqa: F403
from .utils import group_chunks
# How to run this test:
#
# pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py
# -m "(fireworks or ollama) and llama_3b"
# --env FIREWORKS_API_KEY=<your_api_key>
def get_expected_stop_reason(model: str):
return (
StopReason.end_of_message
if ("Llama3.1" in model or "Llama-3.1" in model)
else StopReason.end_of_turn
)
@pytest.fixture
def common_params(inference_model):
return {
"tool_choice": ToolChoice.auto,
"tool_prompt_format": (
ToolPromptFormat.json
if ("Llama3.1" in inference_model or "Llama-3.1" in inference_model)
else ToolPromptFormat.python_list
),
}
@pytest.fixture
def sample_messages():
return [
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="What's the weather like today?"),
]
@pytest.fixture
def sample_tool_definition():
return ToolDefinition(
tool_name="get_weather",
description="Get the current weather",
parameters={
"location": ToolParamDefinition(
param_type="string",
description="The city and state, e.g. San Francisco, CA",
),
},
)
class TestInference:
@pytest.mark.asyncio
async def test_model_list(self, inference_model, inference_stack):
_, models_impl = inference_stack
response = await models_impl.list_models()
assert isinstance(response, list)
assert len(response) >= 1
assert all(isinstance(model, Model) for model in response)
model_def = None
for model in response:
if model.identifier == inference_model:
model_def = model
break
assert model_def is not None
@pytest.mark.asyncio
async def test_completion(self, inference_model, inference_stack):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type not in (
"inline::meta-reference",
"remote::ollama",
"remote::tgi",
"remote::together",
"remote::fireworks",
):
pytest.skip("Other inference providers don't support completion() yet")
response = await inference_impl.completion(
content="Micheael Jordan is born in ",
stream=False,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=50,
),
)
assert isinstance(response, CompletionResponse)
assert "1963" in response.content
chunks = [
r
async for r in await inference_impl.completion(
content="Roses are red,",
stream=True,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=50,
),
)
]
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
assert len(chunks) >= 1
last = chunks[-1]
assert last.stop_reason == StopReason.out_of_tokens
@pytest.mark.asyncio
@pytest.mark.skip("This test is not quite robust")
async def test_completions_structured_output(
self, inference_model, inference_stack
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type not in (
"inline::meta-reference",
"remote::tgi",
"remote::together",
"remote::fireworks",
):
pytest.skip(
"Other inference providers don't support structured output in completions yet"
)
class Output(BaseModel):
name: str
year_born: str
year_retired: str
user_input = "Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003."
response = await inference_impl.completion(
model_id=inference_model,
content=user_input,
stream=False,
sampling_params=SamplingParams(
max_tokens=50,
),
response_format=JsonSchemaResponseFormat(
json_schema=Output.model_json_schema(),
),
)
assert isinstance(response, CompletionResponse)
assert isinstance(response.content, str)
answer = Output.model_validate_json(response.content)
assert answer.name == "Michael Jordan"
assert answer.year_born == "1963"
assert answer.year_retired == "2003"
@pytest.mark.asyncio
async def test_chat_completion_non_streaming(
self, inference_model, inference_stack, common_params, sample_messages
):
inference_impl, _ = inference_stack
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=sample_messages,
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert response.completion_message.role == "assistant"
assert isinstance(response.completion_message.content, str)
assert len(response.completion_message.content) > 0
@pytest.mark.asyncio
async def test_structured_output(
self, inference_model, inference_stack, common_params
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type not in (
"inline::meta-reference",
"remote::fireworks",
"remote::tgi",
"remote::together",
"remote::nvidia",
):
pytest.skip("Other inference providers don't support structured output yet")
class AnswerFormat(BaseModel):
first_name: str
last_name: str
year_of_birth: int
num_seasons_in_nba: int
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=[
# we include context about Michael Jordan in the prompt so that the test is
# focused on the funtionality of the model and not on the information embedded
# in the model. Llama 3.2 3B Instruct tends to think MJ played for 14 seasons.
SystemMessage(
content=(
"You are a helpful assistant.\n\n"
"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons."
)
),
UserMessage(content="Please give me information about Michael Jordan."),
],
stream=False,
response_format=JsonSchemaResponseFormat(
json_schema=AnswerFormat.model_json_schema(),
),
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert response.completion_message.role == "assistant"
assert isinstance(response.completion_message.content, str)
answer = AnswerFormat.model_validate_json(response.completion_message.content)
assert answer.first_name == "Michael"
assert answer.last_name == "Jordan"
assert answer.year_of_birth == 1963
assert answer.num_seasons_in_nba == 15
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="Please give me information about Michael Jordan."),
],
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert isinstance(response.completion_message.content, str)
with pytest.raises(ValidationError):
AnswerFormat.model_validate_json(response.completion_message.content)
@pytest.mark.asyncio
async def test_chat_completion_streaming(
self, inference_model, inference_stack, common_params, sample_messages
):
inference_impl, _ = inference_stack
response = [
r
async for r in await inference_impl.chat_completion(
model_id=inference_model,
messages=sample_messages,
stream=True,
**common_params,
)
]
assert len(response) > 0
assert all(
isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response
)
grouped = group_chunks(response)
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
end = grouped[ChatCompletionResponseEventType.complete][0]
assert end.event.stop_reason == StopReason.end_of_turn
@pytest.mark.asyncio
async def test_chat_completion_with_tool_calling(
self,
inference_model,
inference_stack,
common_params,
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",
)
]
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=messages,
tools=[sample_tool_definition],
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
message = response.completion_message
# This is not supported in most providers :/ they don't return eom_id / eot_id
# stop_reason = get_expected_stop_reason(inference_settings["common_params"]["model"])
# assert message.stop_reason == stop_reason
assert message.tool_calls is not None
assert len(message.tool_calls) > 0
call = message.tool_calls[0]
assert call.tool_name == "get_weather"
assert "location" in call.arguments
assert "San Francisco" in call.arguments["location"]
@pytest.mark.asyncio
async def test_chat_completion_with_tool_calling_streaming(
self,
inference_model,
inference_stack,
common_params,
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",
)
]
response = [
r
async for r in await inference_impl.chat_completion(
model_id=inference_model,
messages=messages,
tools=[sample_tool_definition],
stream=True,
**common_params,
)
]
assert len(response) > 0
assert all(
isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response
)
grouped = group_chunks(response)
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
# This is not supported in most providers :/ they don't return eom_id / eot_id
# expected_stop_reason = get_expected_stop_reason(
# inference_settings["common_params"]["model"]
# )
# end = grouped[ChatCompletionResponseEventType.complete][0]
# assert end.event.stop_reason == expected_stop_reason
if "Llama3.1" in inference_model:
assert all(
isinstance(chunk.event.delta, ToolCallDelta)
for chunk in grouped[ChatCompletionResponseEventType.progress]
)
first = grouped[ChatCompletionResponseEventType.progress][0]
if not isinstance(
first.event.delta.content, ToolCall
): # first chunk may contain entire call
assert first.event.delta.parse_status == ToolCallParseStatus.started
last = grouped[ChatCompletionResponseEventType.progress][-1]
# assert last.event.stop_reason == expected_stop_reason
assert last.event.delta.parse_status == ToolCallParseStatus.success
assert isinstance(last.event.delta.content, ToolCall)
call = last.event.delta.content
assert call.tool_name == "get_weather"
assert "location" in call.arguments
assert "San Francisco" in call.arguments["location"]