forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Removed local execution option from the remote Qdrant provider and introduced an explicit inline provider for the embedded execution. Updated the ollama template to include this option: this part can be reverted in case we don't want to have two default `vector_io` providers. (Closes #1082) ## Test Plan Build and run an ollama distro: ```bash llama stack build --template ollama --image-type conda llama stack run --image-type conda ollama ``` Run one of the sample ingestionapplicatinos like [rag_with_vector_db.py](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py), but replace this line: ```py selected_vector_provider = vector_providers[0] ``` with the following, to use the `qdrant` provider: ```py selected_vector_provider = vector_providers[1] ``` After running the test code, verify the timestamp of the Qdrant store: ```bash % ls -ltr ~/.llama/distributions/ollama/qdrant.db/collection/test_vector_db_* total 784 -rw-r--r--@ 1 dmartino staff 401408 Feb 26 10:07 storage.sqlite ``` [//]: # (## Documentation) --------- Signed-off-by: Daniele Martinoli <dmartino@redhat.com> Co-authored-by: Francisco Arceo <farceo@redhat.com>
23 lines
596 B
Python
23 lines
596 B
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from typing import Any, Dict
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from llama_stack.schema_utils import json_schema_type
|
|
|
|
|
|
@json_schema_type
|
|
class QdrantVectorIOConfig(BaseModel):
|
|
path: str
|
|
|
|
@classmethod
|
|
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
|
|
return {
|
|
"path": "${env.QDRANT_PATH:~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
|
|
}
|