forked from phoenix-oss/llama-stack-mirror
This PR adds support for Qdrant - https://qdrant.tech/ to be used as a vector memory. I've unit-tested the methods to confirm that they work as intended. To run Qdrant ``` docker run -p 6333:6333 qdrant/qdrant ```
192 lines
6.5 KiB
Python
192 lines
6.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import json
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import weaviate
|
|
import weaviate.classes as wvc
|
|
from numpy.typing import NDArray
|
|
from weaviate.classes.init import Auth
|
|
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
|
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
|
from llama_stack.providers.utils.memory.vector_store import (
|
|
BankWithIndex,
|
|
EmbeddingIndex,
|
|
)
|
|
|
|
from .config import WeaviateConfig, WeaviateRequestProviderData
|
|
|
|
|
|
class WeaviateIndex(EmbeddingIndex):
|
|
def __init__(self, client: weaviate.Client, collection_name: str):
|
|
self.client = client
|
|
self.collection_name = collection_name
|
|
|
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
|
assert len(chunks) == len(
|
|
embeddings
|
|
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
|
|
|
data_objects = []
|
|
for i, chunk in enumerate(chunks):
|
|
data_objects.append(
|
|
wvc.data.DataObject(
|
|
properties={
|
|
"chunk_content": chunk.json(),
|
|
},
|
|
vector=embeddings[i].tolist(),
|
|
)
|
|
)
|
|
|
|
# Inserting chunks into a prespecified Weaviate collection
|
|
collection = self.client.collections.get(self.collection_name)
|
|
|
|
# TODO: make this async friendly
|
|
collection.data.insert_many(data_objects)
|
|
|
|
async def query(
|
|
self, embedding: NDArray, k: int, score_threshold: float
|
|
) -> QueryDocumentsResponse:
|
|
collection = self.client.collections.get(self.collection_name)
|
|
|
|
results = collection.query.near_vector(
|
|
near_vector=embedding.tolist(),
|
|
limit=k,
|
|
return_metadata=wvc.query.MetadataQuery(distance=True),
|
|
)
|
|
|
|
chunks = []
|
|
scores = []
|
|
for doc in results.objects:
|
|
chunk_json = doc.properties["chunk_content"]
|
|
try:
|
|
chunk_dict = json.loads(chunk_json)
|
|
chunk = Chunk(**chunk_dict)
|
|
except Exception:
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
print(f"Failed to parse document: {chunk_json}")
|
|
continue
|
|
|
|
chunks.append(chunk)
|
|
scores.append(1.0 / doc.metadata.distance)
|
|
|
|
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
|
|
|
|
|
class WeaviateMemoryAdapter(
|
|
Memory, NeedsRequestProviderData, MemoryBanksProtocolPrivate
|
|
):
|
|
def __init__(self, config: WeaviateConfig) -> None:
|
|
self.config = config
|
|
self.client_cache = {}
|
|
self.cache = {}
|
|
|
|
def _get_client(self) -> weaviate.Client:
|
|
provider_data = self.get_request_provider_data()
|
|
assert provider_data is not None, "Request provider data must be set"
|
|
assert isinstance(provider_data, WeaviateRequestProviderData)
|
|
|
|
key = f"{provider_data.weaviate_cluster_url}::{provider_data.weaviate_api_key}"
|
|
if key in self.client_cache:
|
|
return self.client_cache[key]
|
|
|
|
client = weaviate.connect_to_weaviate_cloud(
|
|
cluster_url=provider_data.weaviate_cluster_url,
|
|
auth_credentials=Auth.api_key(provider_data.weaviate_api_key),
|
|
)
|
|
self.client_cache[key] = client
|
|
return client
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
for client in self.client_cache.values():
|
|
client.close()
|
|
|
|
async def register_memory_bank(
|
|
self,
|
|
memory_bank: MemoryBankDef,
|
|
) -> None:
|
|
assert (
|
|
memory_bank.type == MemoryBankType.vector.value
|
|
), f"Only vector banks are supported {memory_bank.type}"
|
|
|
|
client = self._get_client()
|
|
|
|
# Create collection if it doesn't exist
|
|
if not client.collections.exists(memory_bank.identifier):
|
|
client.collections.create(
|
|
name=memory_bank.identifier,
|
|
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
|
properties=[
|
|
wvc.config.Property(
|
|
name="chunk_content",
|
|
data_type=wvc.config.DataType.TEXT,
|
|
),
|
|
],
|
|
)
|
|
|
|
index = BankWithIndex(
|
|
bank=memory_bank,
|
|
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
|
)
|
|
self.cache[memory_bank.identifier] = index
|
|
|
|
async def list_memory_banks(self) -> List[MemoryBankDef]:
|
|
# TODO: right now the Llama Stack is the source of truth for these banks. That is
|
|
# not ideal. It should be Weaviate which is the source of truth. Unfortunately,
|
|
# list() happens at Stack startup when the Weaviate client (credentials) is not
|
|
# yet available. We need to figure out a way to make this work.
|
|
return [i.bank for i in self.cache.values()]
|
|
|
|
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
|
if bank_id in self.cache:
|
|
return self.cache[bank_id]
|
|
|
|
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
|
if not bank:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
client = self._get_client()
|
|
if not client.collections.exists(bank_id):
|
|
raise ValueError(f"Collection with name `{bank_id}` not found")
|
|
|
|
index = BankWithIndex(
|
|
bank=bank,
|
|
index=WeaviateIndex(client=client, collection_name=bank_id),
|
|
)
|
|
self.cache[bank_id] = index
|
|
return index
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
index = await self._get_and_cache_bank_index(bank_id)
|
|
if not index:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
await index.insert_documents(documents)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
index = await self._get_and_cache_bank_index(bank_id)
|
|
if not index:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
return await index.query_documents(query, params)
|