Composable building blocks to build Llama Apps
Find a file
Charlie Doern 4eee349acd
fix: respect log_level in uvicorn and third party libs (#1524)
# What does this PR do?

uvicorn has a `log_level` arg in uvicorn.run, pass in the effective
level set by the logger.

Additionally, third party libraries like httpx are using our logging
format, but not honoring our log level.

This seems unintended, so loop through all items in the loggerDict and
apply the same log level as what we have set.


## Test Plan

before:

```
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
Environment variable LLAMA_STACK_LOGGING found: all=warn
Using virtual environment: /Users/charliedoern/projects/Documents/llama-stack/venv
+ python -m llama_stack.distribution.server.server --yaml-config /Users/charliedoern/.llama/distributions/ollama/ollama-run.yaml --port 8321
Environment variable LLAMA_STACK_LOGGING found: all=warn
WARNING  2025-03-10 16:05:49,706 root:71 uncategorized: Warning: `bwrap` is not available. Code interpreter tool will
         not work correctly.
INFO     2025-03-10 16:05:49,916 datasets:54 uncategorized: PyTorch version 2.5.1 available.
INFO     2025-03-10 16:05:50,010 httpx:1740 uncategorized: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200
         OK"
INFO     2025-03-10 16:05:50,297 httpx:1740 uncategorized: HTTP Request: POST http://localhost:11434/api/pull "HTTP/1.1
         200 OK"
INFO     2025-03-10 16:05:50,314 httpx:1740 uncategorized: HTTP Request: GET http://localhost:11434/api/tags "HTTP/1.1
         200 OK"
INFO:     Started server process [89663]
INFO:     Waiting for application startup.
INFO:     ASGI 'lifespan' protocol appears unsupported.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```

after:

```
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
Environment variable LLAMA_STACK_LOGGING found: all=warn
Using virtual environment: /Users/charliedoern/projects/Documents/llama-stack/venv
+ python -m llama_stack.distribution.server.server --yaml-config /Users/charliedoern/.llama/distributions/ollama/ollama-run.yaml --port 8321
Environment variable LLAMA_STACK_LOGGING found: all=warn
WARNING  2025-03-10 16:05:20,429 root:71 uncategorized: Warning: `bwrap` is not available. Code interpreter tool will
         not work correctly.
INFO     2025-03-10 16:05:20,639 datasets:54 uncategorized: PyTorch version 2.5.1 available.
```

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-12 11:07:28 -07:00
.cursor/rules test: first unit test for resolver (#1475) 2025-03-07 10:20:51 -08:00
.github ci: run unit tests on all supported python versions (#1575) 2025-03-12 09:55:11 -07:00
distributions fix: Fixed bad file name in inline::localfs (#1358) 2025-03-11 12:46:11 -07:00
docs fix: remove Llama-3.2-1B-Instruct for fireworks (#1558) 2025-03-11 11:19:29 -07:00
llama_stack fix: respect log_level in uvicorn and third party libs (#1524) 2025-03-12 11:07:28 -07:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts fix: clean up detailed history for CHANGELOG (#1494) 2025-03-07 14:03:54 -08:00
tests test: adding an e2e test for measuring TTFT (#1568) 2025-03-11 14:41:55 -07:00
.gitignore chore: Display code coverage for unit tests in PR builds (#1512) 2025-03-10 16:27:33 -04:00
.pre-commit-config.yaml fix: make sure readthedocs is triggered if pyproject.toml is updated 2025-03-08 23:05:10 -08:00
.python-version build: hint on Python version for uv venv (#1172) 2025-02-25 10:37:45 -05:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Add v0.1.6 release notes to changelog (#1506) 2025-03-08 16:20:08 -08:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: Remove duplicate docs on api docs generator (#1534) 2025-03-11 10:01:46 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in build: include .md (#1482) 2025-03-07 12:10:52 -08:00
pyproject.toml chore: Expand mypy exclusions list (#1543) 2025-03-12 09:53:04 -07:00
README.md chore: remove dependency on llama_models completely (#1344) 2025-03-01 12:48:08 -08:00
requirements.txt fix: include jinja2 as a core llama-stack dependency (#1529) 2025-03-10 14:59:11 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock build: revamp "test" dependencies from pyproject (#1468) 2025-03-10 15:43:16 -07:00

Llama Stack

PyPI version PyPI - Downloads License Discord

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Installation

You have two ways to install this repository:

  • Install as a package: You can install the repository directly from PyPI by running the following command:

    pip install llama-stack
    
  • Install from source: If you prefer to install from the source code, we recommend using uv. Then, run the following commands:

     git clone git@github.com:meta-llama/llama-stack.git
     cd llama-stack
    
     uv sync
     uv pip install -e .
    

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.