llama-stack/llama_stack/providers/inline/eval/meta_reference/eval.py
Dinesh Yeduguru 501e7c9d64
Fix opentelemetry adapter (#510)
# What does this PR do?

This PR fixes some of the issues with our telemetry setup to enable logs
to be delivered to opentelemetry and jaeger. Main fixes
1) Updates the open telemetry provider to use the latest oltp exports
instead of deprected ones.
2) Adds a tracing middleware, which injects traces into each HTTP
request that the server recieves and this is going to be the root trace.
Previously, we did this in the create_dynamic_route method, which is
actually not the actual exectuion flow, but more of a config and this
causes the traces to end prematurely. Through middleware, we plugin the
trace start and end at the right location.
3) We manage our own methods to create traces and spans and this does
not fit well with Opentelemetry SDK since it does not support provide a
way to take in traces and spans that are already created. it expects us
to use the SDK to create them. For now, I have a hacky approach of just
maintaining a map from our internal telemetry objects to the open
telemetry specfic ones. This is not the ideal solution. I will explore
other ways to get around this issue. for now, to have something that
works, i am going to keep this as is.

Addresses: #509
2024-11-22 18:18:11 -08:00

270 lines
10 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from llama_models.llama3.api.datatypes import * # noqa: F403
from .....apis.common.job_types import Job
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.agents import Agents
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval_tasks import EvalTask
from llama_stack.apis.inference import Inference
from llama_stack.apis.scoring import Scoring
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from tqdm import tqdm
from .config import MetaReferenceEvalConfig
EVAL_TASKS_PREFIX = "eval_tasks:"
class ColumnName(Enum):
input_query = "input_query"
expected_answer = "expected_answer"
chat_completion_input = "chat_completion_input"
completion_input = "completion_input"
generated_answer = "generated_answer"
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
def __init__(
self,
config: MetaReferenceEvalConfig,
datasetio_api: DatasetIO,
datasets_api: Datasets,
scoring_api: Scoring,
inference_api: Inference,
agents_api: Agents,
) -> None:
self.config = config
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
self.scoring_api = scoring_api
self.inference_api = inference_api
self.agents_api = agents_api
# TODO: assume sync job, will need jobs API for async scheduling
self.jobs = {}
self.eval_tasks = {}
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing eval_tasks from kvstore
start_key = EVAL_TASKS_PREFIX
end_key = f"{EVAL_TASKS_PREFIX}\xff"
stored_eval_tasks = await self.kvstore.range(start_key, end_key)
for eval_task in stored_eval_tasks:
eval_task = EvalTask.model_validate_json(eval_task)
self.eval_tasks[eval_task.identifier] = eval_task
async def shutdown(self) -> None: ...
async def register_eval_task(self, task_def: EvalTask) -> None:
# Store in kvstore
key = f"{EVAL_TASKS_PREFIX}{task_def.identifier}"
await self.kvstore.set(
key=key,
value=task_def.model_dump_json(),
)
self.eval_tasks[task_def.identifier] = task_def
async def validate_eval_input_dataset_schema(self, dataset_id: str) -> None:
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
expected_schemas = [
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.chat_completion_input.value: ChatCompletionInputType(),
},
{
ColumnName.input_query.value: StringType(),
ColumnName.expected_answer.value: StringType(),
ColumnName.completion_input.value: CompletionInputType(),
},
]
if dataset_def.dataset_schema not in expected_schemas:
raise ValueError(
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
)
async def run_eval(
self,
task_id: str,
task_config: EvalTaskConfig,
) -> Job:
task_def = self.eval_tasks[task_id]
dataset_id = task_def.dataset_id
candidate = task_config.eval_candidate
scoring_functions = task_def.scoring_functions
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
all_rows = await self.datasetio_api.get_rows_paginated(
dataset_id=dataset_id,
rows_in_page=(
-1 if task_config.num_examples is None else task_config.num_examples
),
)
res = await self.evaluate_rows(
task_id=task_id,
input_rows=all_rows.rows,
scoring_functions=scoring_functions,
task_config=task_config,
)
# TODO: currently needs to wait for generation before returning
# need job scheduler queue (ray/celery) w/ jobs api
job_id = str(len(self.jobs))
self.jobs[job_id] = res
return Job(job_id=job_id)
async def _run_agent_generation(
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
) -> List[Dict[str, Any]]:
candidate = task_config.eval_candidate
create_response = await self.agents_api.create_agent(candidate.config)
agent_id = create_response.agent_id
generations = []
for i, x in tqdm(enumerate(input_rows)):
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
input_messages = [UserMessage(**x) for x in input_messages]
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
session_create_response = await self.agents_api.create_agent_session(
agent_id, f"session-{i}"
)
session_id = session_create_response.session_id
turn_request = dict(
agent_id=agent_id,
session_id=session_id,
messages=input_messages,
stream=True,
)
turn_response = [
chunk
async for chunk in await self.agents_api.create_agent_turn(
**turn_request
)
]
final_event = turn_response[-1].event.payload
generations.append(
{
ColumnName.generated_answer.value: final_event.turn.output_message.content
}
)
return generations
async def _run_model_generation(
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
) -> List[Dict[str, Any]]:
candidate = task_config.eval_candidate
assert (
candidate.sampling_params.max_tokens is not None
), "SamplingParams.max_tokens must be provided"
generations = []
for x in tqdm(input_rows):
if ColumnName.completion_input.value in x:
input_content = eval(str(x[ColumnName.completion_input.value]))
response = await self.inference_api.completion(
model=candidate.model,
content=input_content,
sampling_params=candidate.sampling_params,
)
generations.append(
{
ColumnName.generated_answer.value: response.completion_message.content
}
)
elif ColumnName.chat_completion_input.value in x:
chat_completion_input_str = str(
x[ColumnName.chat_completion_input.value]
)
input_messages = eval(chat_completion_input_str)
input_messages = [UserMessage(**x) for x in input_messages]
messages = []
if candidate.system_message:
messages.append(candidate.system_message)
messages += input_messages
response = await self.inference_api.chat_completion(
model_id=candidate.model,
messages=messages,
sampling_params=candidate.sampling_params,
)
generations.append(
{
ColumnName.generated_answer.value: response.completion_message.content
}
)
else:
raise ValueError("Invalid input row")
return generations
async def evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: EvalTaskConfig,
) -> EvaluateResponse:
candidate = task_config.eval_candidate
if candidate.type == "agent":
generations = await self._run_agent_generation(input_rows, task_config)
elif candidate.type == "model":
generations = await self._run_model_generation(input_rows, task_config)
else:
raise ValueError(f"Invalid candidate type: {candidate.type}")
# scoring with generated_answer
score_input_rows = [
input_r | generated_r
for input_r, generated_r in zip(input_rows, generations)
]
if task_config.type == "app" and task_config.scoring_params is not None:
scoring_functions_dict = {
scoring_fn_id: task_config.scoring_params.get(scoring_fn_id, None)
for scoring_fn_id in scoring_functions
}
else:
scoring_functions_dict = {
scoring_fn_id: None for scoring_fn_id in scoring_functions
}
score_response = await self.scoring_api.score(
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
)
return EvaluateResponse(generations=generations, scores=score_response.results)
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]:
if job_id in self.jobs:
return JobStatus.completed
return None
async def job_cancel(self, task_id: str, job_id: str) -> None:
raise NotImplementedError("Job cancel is not implemented yet")
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse:
status = await self.job_status(task_id, job_id)
if not status or status != JobStatus.completed:
raise ValueError(f"Job is not completed, Status: {status.value}")
return self.jobs[job_id]