llama-stack/llama_stack/templates/remote-vllm/vllm.py
Dinesh Yeduguru 516e1a3e59
add embedding model by default to distribution templates (#617)
# What does this PR do?
Adds the sentence transformer provider and the `all-MiniLM-L6-v2`
embedding model to the default models to register in the run.yaml for
all providers.

## Test Plan
llama stack build --template together --image-type conda
llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-13 12:48:00 -08:00

128 lines
4.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::vllm"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
}
name = "remote-vllm"
inference_provider = Provider(
provider_id="vllm-inference",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.VLLM_URL}",
),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm-inference",
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="vllm-safety",
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use (an external) vLLM server for running LLM inference",
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=[inference_model, safety_model],
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
},
default_models=[inference_model, embedding_model],
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
Provider(
provider_id="vllm-safety",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.SAFETY_VLLM_URL}",
),
),
embedding_provider,
],
"memory": [memory_provider],
},
default_models=[
inference_model,
safety_model,
embedding_model,
],
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the vLLM server",
),
"VLLM_URL": (
"http://host.docker.internal:5100}/v1",
"URL of the vLLM server with the main inference model",
),
"MAX_TOKENS": (
"4096",
"Maximum number of tokens for generation",
),
"SAFETY_VLLM_URL": (
"http://host.docker.internal:5101/v1",
"URL of the vLLM server with the safety model",
),
"SAFETY_MODEL": (
"meta-llama/Llama-Guard-3-1B",
"Name of the safety (Llama-Guard) model to use",
),
},
)