forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Move around bits. This makes the copies from llama-models _much_ easier to maintain and ensures we don't entangle meta-reference specific tidbits into llama-models code even by accident. Also, kills the meta-reference-quantized-gpu distro and rolls quantization deps into meta-reference-gpu. ## Test Plan ``` LLAMA_MODELS_DEBUG=1 \ with-proxy llama stack run meta-reference-gpu \ --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \ --env INFERENCE_CHECKPOINT_DIR=<DIR> \ --env MODEL_PARALLEL_SIZE=4 \ --env QUANTIZATION_TYPE=fp8_mixed ``` Start a server with and without quantization. Point integration tests to it using: ``` pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct ```
133 lines
4.6 KiB
Python
133 lines
4.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import argparse
|
|
import textwrap
|
|
from io import StringIO
|
|
from pathlib import Path
|
|
|
|
from llama_stack.cli.subcommand import Subcommand
|
|
from llama_stack.cli.table import print_table
|
|
from llama_stack.models.llama.sku_types import CoreModelId, ModelFamily, is_multimodal, model_family
|
|
|
|
ROOT_DIR = Path(__file__).parent.parent.parent
|
|
|
|
|
|
class ModelPromptFormat(Subcommand):
|
|
"""Llama model cli for describe a model prompt format (message formats)"""
|
|
|
|
def __init__(self, subparsers: argparse._SubParsersAction):
|
|
super().__init__()
|
|
self.parser = subparsers.add_parser(
|
|
"prompt-format",
|
|
prog="llama model prompt-format",
|
|
description="Show llama model message formats",
|
|
epilog=textwrap.dedent(
|
|
"""
|
|
Example:
|
|
llama model prompt-format <options>
|
|
"""
|
|
),
|
|
formatter_class=argparse.RawTextHelpFormatter,
|
|
)
|
|
self._add_arguments()
|
|
self.parser.set_defaults(func=self._run_model_template_cmd)
|
|
|
|
def _add_arguments(self):
|
|
self.parser.add_argument(
|
|
"-m",
|
|
"--model-name",
|
|
type=str,
|
|
help="Example: Llama3.1-8B or Llama3.2-11B-Vision, etc\n"
|
|
"(Run `llama model list` to see a list of valid model names)",
|
|
)
|
|
self.parser.add_argument(
|
|
"-l",
|
|
"--list",
|
|
action="store_true",
|
|
help="List all available models",
|
|
)
|
|
|
|
def _run_model_template_cmd(self, args: argparse.Namespace) -> None:
|
|
import importlib.resources
|
|
|
|
# Only Llama 3.1 and 3.2 are supported
|
|
supported_model_ids = [
|
|
m for m in CoreModelId if model_family(m) in {ModelFamily.llama3_1, ModelFamily.llama3_2}
|
|
]
|
|
|
|
model_list = [m.value for m in supported_model_ids]
|
|
|
|
if args.list:
|
|
headers = ["Model(s)"]
|
|
rows = []
|
|
for m in model_list:
|
|
rows.append(
|
|
[
|
|
m,
|
|
]
|
|
)
|
|
print_table(
|
|
rows,
|
|
headers,
|
|
separate_rows=True,
|
|
)
|
|
return
|
|
|
|
try:
|
|
model_id = CoreModelId(args.model_name)
|
|
except ValueError:
|
|
self.parser.error(
|
|
f"{args.model_name} is not a valid Model. Choose one from the list of valid models. "
|
|
f"Run `llama model list` to see the valid model names."
|
|
)
|
|
|
|
if model_id not in supported_model_ids:
|
|
self.parser.error(
|
|
f"{model_id} is not a valid Model. Choose one from the list of valid models. "
|
|
f"Run `llama model list` to see the valid model names."
|
|
)
|
|
|
|
llama_3_1_file = ROOT_DIR / "models" / "llama" / "llama3_1" / "prompt_format.md"
|
|
llama_3_2_text_file = ROOT_DIR / "models" / "llama" / "llama3_2" / "text_prompt_format.md"
|
|
llama_3_2_vision_file = ROOT_DIR / "models" / "llama" / "llama3_2" / "vision_prompt_format.md"
|
|
if model_family(model_id) == ModelFamily.llama3_1:
|
|
with importlib.resources.as_file(llama_3_1_file) as f:
|
|
content = f.open("r").read()
|
|
elif model_family(model_id) == ModelFamily.llama3_2:
|
|
if is_multimodal(model_id):
|
|
with importlib.resources.as_file(llama_3_2_vision_file) as f:
|
|
content = f.open("r").read()
|
|
else:
|
|
with importlib.resources.as_file(llama_3_2_text_file) as f:
|
|
content = f.open("r").read()
|
|
|
|
render_markdown_to_pager(content)
|
|
|
|
|
|
def render_markdown_to_pager(markdown_content: str):
|
|
from rich.console import Console
|
|
from rich.markdown import Markdown
|
|
from rich.style import Style
|
|
from rich.text import Text
|
|
|
|
class LeftAlignedHeaderMarkdown(Markdown):
|
|
def parse_header(self, token):
|
|
level = token.type.count("h")
|
|
content = Text(token.content)
|
|
header_style = Style(color="bright_blue", bold=True)
|
|
header = Text(f"{'#' * level} ", style=header_style) + content
|
|
self.add_text(header)
|
|
|
|
# Render the Markdown
|
|
md = LeftAlignedHeaderMarkdown(markdown_content)
|
|
|
|
# Capture the rendered output
|
|
output = StringIO()
|
|
console = Console(file=output, force_terminal=True, width=100) # Set a fixed width
|
|
console.print(md)
|
|
rendered_content = output.getvalue()
|
|
print(rendered_content)
|