forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Move around bits. This makes the copies from llama-models _much_ easier to maintain and ensures we don't entangle meta-reference specific tidbits into llama-models code even by accident. Also, kills the meta-reference-quantized-gpu distro and rolls quantization deps into meta-reference-gpu. ## Test Plan ``` LLAMA_MODELS_DEBUG=1 \ with-proxy llama stack run meta-reference-gpu \ --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \ --env INFERENCE_CHECKPOINT_DIR=<DIR> \ --env MODEL_PARALLEL_SIZE=4 \ --env QUANTIZATION_TYPE=fp8_mixed ``` Start a server with and without quantization. Point integration tests to it using: ``` pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct ```
1428 lines
50 KiB
Python
1428 lines
50 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
import math
|
|
from functools import partial
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import fairscale.nn.model_parallel.initialize as fs_init
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from fairscale.nn.model_parallel.layers import (
|
|
ColumnParallelLinear,
|
|
RowParallelLinear,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from PIL import Image as PIL_Image
|
|
from torch import Tensor, nn
|
|
from torch.distributed import _functional_collectives as funcol
|
|
|
|
from ..model import ModelArgs, RMSNorm, apply_rotary_emb, precompute_freqs_cis
|
|
from .encoder_utils import (
|
|
build_encoder_attention_mask,
|
|
contract_num_tokens_from_mult8,
|
|
expand_num_tokens_to_mult8,
|
|
initialize_global_position_embedding_from_local,
|
|
resize_global_position_embedding,
|
|
resize_local_position_embedding,
|
|
)
|
|
from .image_transform import VariableSizeImageTransform
|
|
from .utils import get_negative_inf_value, to_2tuple
|
|
|
|
logger = logging.getLogger(__name__)
|
|
MP_SCALE = 8
|
|
|
|
|
|
def reduce_from_tensor_model_parallel_region(input_):
|
|
"""All-reduce the input tensor across model parallel group."""
|
|
output = funcol.all_reduce(input_, "sum", group=fs_init.get_model_parallel_group())
|
|
output = funcol.wait_tensor(output)
|
|
return output
|
|
|
|
|
|
def gather_from_tensor_model_parallel_region(input_):
|
|
"""Gather tensors and concatenate along the last dimension."""
|
|
|
|
world_size = fs_init.get_model_parallel_world_size()
|
|
# Size and dimension.
|
|
last_dim = input_.dim() - 1
|
|
rank = fs_init.get_model_parallel_rank()
|
|
|
|
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
|
tensor_list[rank] = input_
|
|
output = funcol.all_gather_tensor(
|
|
input_,
|
|
gather_dim=last_dim,
|
|
group=fs_init.get_model_parallel_group(),
|
|
)
|
|
output = funcol.wait_tensor(output)
|
|
return output
|
|
|
|
|
|
def _get_full_row_masked_out_mask(
|
|
attn_bias,
|
|
negative_inf_value,
|
|
):
|
|
"""
|
|
attn_bias should be a 4D tensor of shape [B, H, S1, S2]
|
|
where B is the batch size, H is the number of heads,
|
|
and S1/S2 are the sequence lengths. This returns
|
|
a 4D tensor of shape [B, H, S1, 1] which stores boolean
|
|
values which are 0 if the a full row in the last dimension
|
|
contains negative infinity values, otherwise it's 1.
|
|
"""
|
|
return (attn_bias != negative_inf_value).any(dim=-1).type_as(attn_bias)[..., None]
|
|
|
|
|
|
# Image encoder for inference
|
|
class LayerNorm(nn.LayerNorm):
|
|
"""Subclass torch's LayerNorm to handle fp16."""
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
|
return x
|
|
|
|
|
|
class ColumnParallelConv2dPatch(torch.nn.Module):
|
|
"""Conv2D Patching layer with model parallelism.
|
|
Column parallel over unfolded input.
|
|
Arguments:
|
|
in_channels: Input channels.
|
|
out_channels: Output channels.
|
|
kernel_size: Size of convolution kernel.
|
|
stride (default 1): Stride for convolution.
|
|
bias (default False): Use bias in Conv2d.
|
|
Input: (bsz, in_channels, width, height)
|
|
Output: (bsz, num_tokens, out_channels)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, Tuple[int, int]],
|
|
stride: Union[int, Tuple[int, int]],
|
|
bias: Optional[bool] = False,
|
|
) -> None:
|
|
super().__init__()
|
|
if isinstance(kernel_size, int):
|
|
kernel_size = (kernel_size, kernel_size)
|
|
self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
|
|
self._linear = ColumnParallelLinear(
|
|
in_channels * kernel_size[0] * kernel_size[1],
|
|
out_channels,
|
|
bias=bias,
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self._unfold(x)
|
|
x = x.permute(0, 2, 1)
|
|
x = F.linear(x, self._linear.weight)
|
|
x = gather_from_tensor_model_parallel_region(x)
|
|
return x
|
|
|
|
|
|
class ImageFeedForward(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
hidden_dim: int,
|
|
dropout: float,
|
|
act_layer: Callable = nn.GELU,
|
|
):
|
|
super().__init__()
|
|
# layers
|
|
self.c_fc = ColumnParallelLinear(
|
|
dim,
|
|
hidden_dim,
|
|
bias=True,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
hidden_dim,
|
|
dim,
|
|
bias=True,
|
|
input_is_parallel=True,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.non_linearity = act_layer()
|
|
self.dropout = dropout
|
|
|
|
def forward(self, x):
|
|
hidden = F.linear(x, self.c_fc.weight, self.c_fc.bias)
|
|
hidden = self.non_linearity(hidden)
|
|
hidden = F.linear(hidden, self.c_proj.weight)
|
|
hidden = reduce_from_tensor_model_parallel_region(hidden)
|
|
hidden += self.c_proj.bias
|
|
return hidden
|
|
|
|
|
|
class ImageAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
head_dim,
|
|
n_heads,
|
|
):
|
|
super().__init__()
|
|
world_size = fs_init.get_model_parallel_world_size()
|
|
qkvo_replication = 1
|
|
if world_size > 16:
|
|
qkvo_replication = world_size // 8
|
|
|
|
self.n_kv_heads = n_heads
|
|
self.n_local_heads = n_heads * qkvo_replication // world_size
|
|
self.n_local_kv_heads = self.n_kv_heads * qkvo_replication // world_size
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
self.head_dim = dim // n_heads
|
|
|
|
self.wq = ColumnParallelLinear(
|
|
dim,
|
|
qkvo_replication * n_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wk = ColumnParallelLinear(
|
|
dim,
|
|
qkvo_replication * self.n_kv_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wv = ColumnParallelLinear(
|
|
dim,
|
|
qkvo_replication * self.n_kv_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wo = RowParallelLinear(
|
|
qkvo_replication * n_heads * self.head_dim,
|
|
dim,
|
|
bias=False,
|
|
input_is_parallel=True,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.qkvo_replication = qkvo_replication
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
mask: torch.Tensor = None,
|
|
):
|
|
xq, xk, xv = [F.linear(x, w) for w in [self.wq.weight, self.wk.weight, self.wv.weight]]
|
|
|
|
bs, slen, _ = xq.shape
|
|
|
|
xq = xq.view(bs, slen, self.n_local_heads, self.head_dim)
|
|
xk = xk.view(bs, xk.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
xv = xv.view(bs, xv.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
|
|
xq, xk, xv = [tensor.transpose(1, 2) for tensor in (xq, xk, xv)]
|
|
|
|
xk = xk.repeat_interleave(self.n_rep, dim=1)
|
|
xv = xv.repeat_interleave(self.n_rep, dim=1)
|
|
|
|
attn_output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, dropout_p=0.0)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().reshape(bs, slen, -1)
|
|
|
|
out = F.linear(attn_output, self.wo.weight)
|
|
out = reduce_from_tensor_model_parallel_region(out)
|
|
out = out / self.qkvo_replication
|
|
return out
|
|
|
|
|
|
class ImageTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
n_head: int,
|
|
mlp_ratio: float = 4.0,
|
|
act_layer: Callable = nn.GELU,
|
|
gated: bool = False,
|
|
):
|
|
super().__init__()
|
|
assert d_model % n_head == 0
|
|
self.n_heads = n_head
|
|
self.head_dim = d_model // self.n_heads
|
|
self.attn = ImageAttention(
|
|
dim=d_model,
|
|
head_dim=self.head_dim,
|
|
n_heads=self.n_heads,
|
|
)
|
|
self.ln_1 = LayerNorm(d_model)
|
|
self.mlp = ImageFeedForward(
|
|
dim=d_model,
|
|
hidden_dim=int(mlp_ratio * d_model),
|
|
dropout=0.0,
|
|
act_layer=act_layer,
|
|
)
|
|
self.ln_2 = LayerNorm(d_model)
|
|
self.gated = gated
|
|
if gated:
|
|
self.gate_attn = nn.Parameter(torch.zeros(1))
|
|
self.gate_ffn = nn.Parameter(torch.zeros(1))
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
mask: torch.Tensor = None,
|
|
):
|
|
_gate_attn = 1 if not self.gated else self.gate_attn.tanh()
|
|
_gate_ffn = 1 if not self.gated else self.gate_ffn.tanh()
|
|
x = x + _gate_attn * self.attn(self.ln_1(x), mask=mask)
|
|
x = x + _gate_ffn * self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
class ImageTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
act_layer: Callable = nn.GELU,
|
|
gated: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.width = width
|
|
self.layers = layers
|
|
self.resblocks = nn.ModuleList(
|
|
[
|
|
ImageTransformerBlock(
|
|
d_model=width,
|
|
n_head=heads,
|
|
mlp_ratio=mlp_ratio,
|
|
act_layer=act_layer,
|
|
gated=gated,
|
|
)
|
|
for _ in range(self.layers)
|
|
]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, return_intermediate=None, mask=None):
|
|
out = []
|
|
for idx, r in enumerate(self.resblocks):
|
|
if return_intermediate is not None and idx in return_intermediate:
|
|
out.append(x)
|
|
x = r(x, mask=mask)
|
|
if return_intermediate is not None:
|
|
return x, torch.stack(out, dim=-1)
|
|
return x
|
|
|
|
|
|
class VisionEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
max_num_tiles: int,
|
|
ckpt_path: str = None,
|
|
image_size: int = 224,
|
|
patch_size: int = 14,
|
|
width: int = 1280,
|
|
layers: int = 32,
|
|
heads: int = 16,
|
|
mlp_ratio: float = 4.0,
|
|
act_layer: Callable = nn.GELU,
|
|
in_channels: int = 3,
|
|
load_ckpt: bool = False,
|
|
n_global_layers: int = 2,
|
|
global_model: bool = False,
|
|
return_intermediate=None,
|
|
):
|
|
super().__init__()
|
|
self.global_model = global_model
|
|
self.return_intermediate = return_intermediate
|
|
self.max_num_tiles = max_num_tiles
|
|
self.image_size = to_2tuple(image_size)
|
|
self.patch_size = to_2tuple(patch_size)
|
|
self.grid_size = (
|
|
self.image_size[0] // self.patch_size[0],
|
|
self.image_size[1] // self.patch_size[1],
|
|
)
|
|
self.conv1 = ColumnParallelConv2dPatch(
|
|
in_channels=in_channels,
|
|
out_channels=width,
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
bias=False,
|
|
)
|
|
scale = width**-0.5
|
|
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
|
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
|
self.ln_post = LayerNorm(width)
|
|
self.ln_pre = LayerNorm(width)
|
|
self.transformer = ImageTransformer(width, layers, heads, mlp_ratio, act_layer=act_layer)
|
|
# pre and post tile position embedding
|
|
self.global_transformer = ImageTransformer(
|
|
width, n_global_layers, heads, mlp_ratio, act_layer=act_layer, gated=True
|
|
)
|
|
# pre and post tile position embedding
|
|
self.pre_tile_pos_embed = TilePositionEmbedding(
|
|
num_tiles=max_num_tiles,
|
|
width=width,
|
|
gated=True,
|
|
)
|
|
self.post_tile_pos_embed = TilePositionEmbedding(
|
|
num_tiles=max_num_tiles,
|
|
width=width,
|
|
gated=True,
|
|
)
|
|
self.gated_positional_embedding = nn.Parameter(
|
|
scale
|
|
* torch.randn(
|
|
max_num_tiles,
|
|
max_num_tiles,
|
|
self.grid_size[0] * self.grid_size[1] + 1,
|
|
width,
|
|
)
|
|
)
|
|
self.gated_positional_embedding_gate = nn.Parameter(torch.zeros(1))
|
|
|
|
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
|
|
def load_hook(
|
|
self,
|
|
state_dict: Dict[str, Any],
|
|
prefix: str,
|
|
local_metadata: Dict[str, Any],
|
|
strict: bool = True,
|
|
missing_keys: List[str] = None,
|
|
unexpected_keys: List[str] = None,
|
|
error_msgs: List[str] = None,
|
|
return_state_dict: bool = False,
|
|
) -> None:
|
|
orig_pos_embed = state_dict.get(prefix + "positional_embedding")
|
|
if orig_pos_embed is not None:
|
|
new_pos_embed = resize_local_position_embedding(orig_pos_embed, self.grid_size)
|
|
state_dict[prefix + "positional_embedding"] = new_pos_embed
|
|
if hasattr(self, "gated_positional_embedding"):
|
|
if prefix + "gated_positional_embedding" not in state_dict:
|
|
# resize positional_embedding to fit the new grid size
|
|
global_pos_embed = initialize_global_position_embedding_from_local(
|
|
new_pos_embed,
|
|
self.grid_size,
|
|
self.max_num_tiles,
|
|
self.max_num_tiles,
|
|
)
|
|
state_dict[prefix + "gated_positional_embedding"] = global_pos_embed
|
|
state_dict[prefix + "gated_positional_embedding_gate"] = torch.zeros(1, dtype=global_pos_embed.dtype)
|
|
logger.info(f"Initialized global positional embedding with size {global_pos_embed.size()}")
|
|
else:
|
|
global_pos_embed = resize_global_position_embedding(
|
|
state_dict[prefix + "gated_positional_embedding"],
|
|
self.grid_size,
|
|
self.max_num_tiles,
|
|
self.max_num_tiles,
|
|
)
|
|
logger.info(
|
|
f"Resized global positional embedding from {state_dict[prefix + 'gated_positional_embedding'].size()} to {global_pos_embed.size()}"
|
|
)
|
|
state_dict[prefix + "gated_positional_embedding"] = global_pos_embed
|
|
if return_state_dict:
|
|
return state_dict
|
|
|
|
def apply_positional_embedding(self, x, ar):
|
|
# apply regular position embedding
|
|
bsz, num_chunks, num_tokens, dim = x.shape
|
|
x = x.view(bsz * num_chunks, num_tokens, dim)
|
|
x = x + self.positional_embedding * (1 - self.gated_positional_embedding_gate.tanh())
|
|
x = x.view(bsz, num_chunks, num_tokens, dim)
|
|
for idx, arx in enumerate(ar):
|
|
_pos_embed = self.gated_positional_embedding[: arx[0], : arx[1]]
|
|
_pos_embed = _pos_embed.reshape(arx[0] * arx[1], *_pos_embed.shape[2:])
|
|
x[idx, : arx[0] * arx[1]] += _pos_embed * self.gated_positional_embedding_gate.tanh()
|
|
return x
|
|
|
|
def apply_class_embedding(self, x):
|
|
x = torch.cat(
|
|
[
|
|
self.class_embedding.to(x.dtype)
|
|
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
|
x,
|
|
],
|
|
dim=1,
|
|
) # shape = [*, grid ** 2 + 1, width]
|
|
return x
|
|
|
|
def forward(self, images: torch.Tensor, ar: torch.Tensor) -> torch.Tensor:
|
|
if images.ndim == 5:
|
|
num_concurrent_media = 1
|
|
bsz, num_chunks, nch, w, h = images.shape
|
|
else:
|
|
bsz, num_concurrent_media, num_chunks, nch, w, h = images.shape
|
|
|
|
images = images.reshape(bsz * num_concurrent_media * num_chunks, nch, w, h)
|
|
ar = ar.reshape(bsz * num_concurrent_media, 2)
|
|
|
|
# patch embedding
|
|
x = images.reshape(bsz * num_concurrent_media * num_chunks, nch, w, h)
|
|
x = self.conv1(x) # shape = [*, width, grid ** 2]
|
|
_, ntok, dim = x.shape
|
|
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok, dim)
|
|
|
|
# tile embeddings
|
|
x = self.pre_tile_pos_embed(x, ar)
|
|
x = x.reshape(bsz * num_concurrent_media * num_chunks, ntok, dim)
|
|
|
|
# apply cls token
|
|
x = self.apply_class_embedding(x)
|
|
ntok += 1
|
|
|
|
# apply position embeddings
|
|
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok, dim)
|
|
x = self.apply_positional_embedding(x, ar)
|
|
|
|
x = self.ln_pre(x)
|
|
npad, attn_mask = 0, None
|
|
x, npad = expand_num_tokens_to_mult8(x)
|
|
attn_mask = build_encoder_attention_mask(x, ar, ntok, num_chunks, 1)
|
|
x = x.view(bsz * num_concurrent_media, -1, dim)
|
|
x, int_x = self.transformer(x, return_intermediate=self.return_intermediate, mask=attn_mask)
|
|
|
|
x = self.ln_post(x)
|
|
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok + npad, dim)
|
|
x = self.post_tile_pos_embed(x, ar)
|
|
x = x.reshape(bsz * num_concurrent_media, num_chunks * (ntok + npad), dim)
|
|
x = self.global_transformer(x, mask=attn_mask)
|
|
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok + npad, dim)
|
|
x = contract_num_tokens_from_mult8(x, npad)
|
|
|
|
# adding back intermediate layer outputs
|
|
x = x.reshape(bsz, num_concurrent_media, num_chunks, ntok, dim)
|
|
int_x = int_x.reshape(bsz * num_concurrent_media, num_chunks, ntok + npad, -1)
|
|
int_x = contract_num_tokens_from_mult8(int_x, npad)
|
|
int_x = int_x.reshape(bsz, num_concurrent_media, num_chunks, ntok, -1)
|
|
x = torch.cat([x, int_x], dim=-1)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""Multi-head attention module."""
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
"""
|
|
Initialize the Attention module.
|
|
Args:
|
|
args (ModelArgs): Model configuration parameters.
|
|
Attributes:
|
|
n_kv_heads (int): Number of key and value heads.
|
|
n_local_heads (int): Number of local query heads.
|
|
n_local_kv_heads (int): Number of local key and value heads.
|
|
n_rep (int): Number of repetitions for local heads.
|
|
head_dim (int): Dimension size of each attention head.
|
|
wq (ColumnParallelLinear): Linear transformation for queries.
|
|
wk (ColumnParallelLinear): Linear transformation for keys.
|
|
wv (ColumnParallelLinear): Linear transformation for values.
|
|
wo (RowParallelLinear): Linear transformation for output.
|
|
cache_k (torch.Tensor): Cached keys for attention.
|
|
cache_v (torch.Tensor): Cached values for attention.
|
|
"""
|
|
super().__init__()
|
|
world_size = fs_init.get_model_parallel_world_size()
|
|
replication_factor = 1
|
|
if world_size > 8:
|
|
replication_factor = world_size // MP_SCALE
|
|
|
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
self.n_kv_heads *= replication_factor
|
|
|
|
self.n_local_heads = args.n_heads // world_size
|
|
self.n_local_kv_heads = self.n_kv_heads // world_size
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.max_seq_len = args.max_seq_len
|
|
|
|
self.wq = ColumnParallelLinear(
|
|
args.dim,
|
|
args.n_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wk = ColumnParallelLinear(
|
|
args.dim,
|
|
self.n_kv_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wv = ColumnParallelLinear(
|
|
args.dim,
|
|
self.n_kv_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wo = RowParallelLinear(
|
|
args.n_heads * self.head_dim,
|
|
args.dim,
|
|
bias=False,
|
|
input_is_parallel=True,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.n_heads = args.n_heads
|
|
|
|
def setup_cache(self, max_batch_size: int, dtype: torch.dtype):
|
|
cache_shape = (
|
|
max_batch_size,
|
|
self.max_seq_len,
|
|
self.n_local_kv_heads,
|
|
self.head_dim,
|
|
)
|
|
self.register_buffer(
|
|
"key_cache",
|
|
torch.zeros(
|
|
cache_shape,
|
|
dtype=dtype,
|
|
),
|
|
persistent=False,
|
|
)
|
|
self.register_buffer(
|
|
"value_cache",
|
|
torch.zeros(
|
|
cache_shape,
|
|
dtype=dtype,
|
|
),
|
|
persistent=False,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
position_ids: torch.LongTensor,
|
|
):
|
|
self.key_cache = self.key_cache.to(x.device)
|
|
self.value_cache = self.value_cache.to(x.device)
|
|
|
|
xq, xk, xv = [F.linear(x, w) for w in [self.wq.weight, self.wk.weight, self.wv.weight]]
|
|
|
|
bs, slen, _ = xq.shape
|
|
|
|
xq = xq.view(bs, slen, self.n_local_heads, self.head_dim)
|
|
xk = xk.view(bs, xk.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
xv = xv.view(bs, xv.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
|
|
|
|
self.key_cache[:bs, position_ids, ...] = xk
|
|
self.value_cache[:bs, position_ids, ...] = xv
|
|
|
|
# TODO: we can avoid slicing on first dimension by always padding to max_batch_size()
|
|
xk = self.key_cache[:bs, ...]
|
|
xv = self.value_cache[:bs, ...]
|
|
|
|
xq, xk, xv = [tensor.transpose(1, 2) for tensor in (xq, xk, xv)]
|
|
|
|
xk = xk.repeat_interleave(self.n_rep, dim=1)
|
|
xv = xv.repeat_interleave(self.n_rep, dim=1)
|
|
|
|
attn_output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, dropout_p=0.0)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().reshape(bs, slen, -1)
|
|
|
|
out = F.linear(attn_output, self.wo.weight)
|
|
out = reduce_from_tensor_model_parallel_region(out)
|
|
return out
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
hidden_dim: int,
|
|
multiple_of: int,
|
|
ffn_dim_multiplier: Optional[float],
|
|
):
|
|
"""
|
|
Initialize the FeedForward module.
|
|
Args:
|
|
dim (int): Input dimension.
|
|
hidden_dim (int): Hidden dimension of the feedforward layer.
|
|
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
|
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
|
|
Attributes:
|
|
w1 (ColumnParallelLinear): Linear transformation for the first layer.
|
|
w2 (RowParallelLinear): Linear transformation for the second layer.
|
|
w3 (ColumnParallelLinear): Linear transformation for the third layer.
|
|
"""
|
|
super().__init__()
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
# custom dim factor multiplier
|
|
if ffn_dim_multiplier is not None:
|
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
|
|
self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x)
|
|
self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
|
|
def forward(self, x):
|
|
x1, x3 = [F.linear(x, w) for w in [self.w1.weight, self.w3.weight]]
|
|
x1 = F.silu(x1)
|
|
x_in = x1 * x3
|
|
out = F.linear(x_in, self.w2.weight)
|
|
out = reduce_from_tensor_model_parallel_region(out)
|
|
return out
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, layer_id: int, args: ModelArgs):
|
|
"""
|
|
Initialize a TransformerBlock.
|
|
Args:
|
|
layer_id (int): Identifier for the layer.
|
|
args (ModelArgs): Model configuration parameters.
|
|
Attributes:
|
|
n_heads (int): Number of attention heads.
|
|
dim (int): Dimension size of the model.
|
|
head_dim (int): Dimension size of each attention head.
|
|
attention (Attention): Attention module.
|
|
feed_forward (FeedForward): FeedForward module.
|
|
layer_id (int): Identifier for the layer.
|
|
attention_norm (RMSNorm): Layer normalization for attention output.
|
|
ffn_norm (RMSNorm): Layer normalization for feedforward output.
|
|
"""
|
|
super().__init__()
|
|
self.n_heads = args.n_heads
|
|
self.dim = args.dim
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.attention = Attention(args)
|
|
self.feed_forward = FeedForward(
|
|
dim=args.dim,
|
|
hidden_dim=4 * args.dim,
|
|
multiple_of=args.multiple_of,
|
|
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
|
)
|
|
self.layer_id = layer_id
|
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
def setup_cache(self, max_batch_size: int, dtype: torch.dtype):
|
|
self.attention.setup_cache(max_batch_size, dtype)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
position_ids: torch.LongTensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Perform a forward pass through the TransformerBlock.
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
start_pos (int): Starting position for attention caching.
|
|
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
|
|
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
|
|
Returns:
|
|
torch.Tensor: Output tensor after applying attention and feedforward layers.
|
|
"""
|
|
h = self.attention.forward(
|
|
x=self.attention_norm(x),
|
|
freqs_cis=freqs_cis,
|
|
mask=mask,
|
|
position_ids=position_ids,
|
|
)
|
|
h = h + x
|
|
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
|
return out
|
|
|
|
|
|
class TilePositionEmbedding(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_tiles: int,
|
|
width: int,
|
|
gated: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.num_tiles = num_tiles
|
|
self.width = width
|
|
self.embedding = nn.Parameter(torch.randn(num_tiles, num_tiles, 1, width) / math.sqrt(width))
|
|
self.gated = gated
|
|
if gated:
|
|
self.gate = nn.Parameter(torch.zeros(1))
|
|
|
|
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
|
|
def load_hook(
|
|
self,
|
|
state_dict,
|
|
prefix,
|
|
local_metadata,
|
|
strict,
|
|
missing_keys,
|
|
unexpected_keys,
|
|
error_msgs,
|
|
):
|
|
# load the weights from the checkpoint
|
|
embed = state_dict.get(prefix + "embedding")
|
|
if embed is not None:
|
|
# reshape the weights to the correct shape
|
|
nt_old, nt_old, _, w = embed.shape
|
|
logging.info(f"Resizing tile embedding from {nt_old}x{nt_old} to {self.num_tiles}x{self.num_tiles}")
|
|
embed_new = TilePositionEmbedding._dynamic_resize(embed, self.num_tiles)
|
|
# assign the weights to the module
|
|
state_dict[prefix + "embedding"] = embed_new
|
|
|
|
@staticmethod
|
|
def _dynamic_resize(embed: torch.Tensor, num_tiles: int):
|
|
nt_old, nt_old, _, w = embed.shape
|
|
embed = embed.permute(2, 3, 0, 1)
|
|
|
|
embed_new = F.interpolate(
|
|
embed,
|
|
size=(num_tiles, num_tiles),
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
# reshape the weights to the correct shape
|
|
embed_new = embed_new.permute(2, 3, 0, 1)
|
|
return embed_new
|
|
|
|
def forward(self, x: torch.Tensor, ar: torch.Tensor, num_tiles: int = None):
|
|
embed = self.embedding
|
|
if num_tiles is None:
|
|
num_tiles = self.num_tiles
|
|
elif num_tiles > self.num_tiles:
|
|
embed = TilePositionEmbedding._dynamic_resize(self.embedding, num_tiles)
|
|
out_pos_embed = torch.zeros(x.shape[0], num_tiles, 1, self.width, device=x.device, dtype=x.dtype)
|
|
for idx, arx in enumerate(ar):
|
|
h, w = arx
|
|
out_pos_embed[idx, : w * h] = embed[:h, :w].reshape(w * h, 1, self.width)
|
|
if self.gated:
|
|
out_pos_embed = out_pos_embed * self.gate.tanh()
|
|
x = x + out_pos_embed
|
|
return x
|
|
|
|
|
|
def _noinit(x):
|
|
return x
|
|
|
|
|
|
class CrossAttention(torch.nn.Module):
|
|
"""Cross attention layer with model-parallel attention layers."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
head_dim: int,
|
|
n_heads: int,
|
|
n_kv_heads: int,
|
|
norm_eps: float,
|
|
):
|
|
super().__init__()
|
|
self.world_size = fs_init.get_model_parallel_world_size()
|
|
replication_factor = 1
|
|
if self.world_size > 8:
|
|
replication_factor = self.world_size // MP_SCALE
|
|
n_kv_heads *= replication_factor
|
|
|
|
assert n_heads % n_kv_heads == 0
|
|
|
|
self.wq = ColumnParallelLinear(
|
|
dim,
|
|
n_heads * head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=_noinit,
|
|
)
|
|
|
|
self.wk = ColumnParallelLinear(
|
|
dim,
|
|
n_kv_heads * head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=_noinit,
|
|
)
|
|
self.wv = ColumnParallelLinear(
|
|
dim,
|
|
n_kv_heads * head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=_noinit,
|
|
)
|
|
self.wo = RowParallelLinear(
|
|
n_heads * head_dim,
|
|
dim,
|
|
bias=False,
|
|
input_is_parallel=True,
|
|
init_method=_noinit,
|
|
)
|
|
|
|
self.n_heads = n_heads
|
|
self.head_dim = head_dim
|
|
self.n_kv_heads = n_kv_heads
|
|
|
|
self.q_norm = RMSNorm(
|
|
self.head_dim,
|
|
eps=norm_eps,
|
|
)
|
|
self.k_norm = RMSNorm(
|
|
self.head_dim,
|
|
eps=norm_eps,
|
|
)
|
|
|
|
# cross-attention heads are model parallel similar to
|
|
# self-attention, and we also use the identical KV head
|
|
# combination to ensure parity with the corresponding
|
|
# trunk LLM (i.e., group query attention) -- @dubeya
|
|
# local heads
|
|
assert self.n_heads % self.n_kv_heads == 0
|
|
assert self.n_heads % self.world_size == 0
|
|
assert self.n_kv_heads % self.world_size == 0
|
|
self.n_local_heads = self.n_heads // self.world_size
|
|
self.n_local_kv_heads = self.n_kv_heads // self.world_size
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
|
|
def _compute_xattn_kv_cache(self, xattn_tokens: torch.Tensor) -> torch.Tensor:
|
|
bsz = xattn_tokens.shape[0]
|
|
xk = self.wk(xattn_tokens)
|
|
xv = self.wv(xattn_tokens)
|
|
|
|
_, seqlen_y, _ = xk.shape
|
|
|
|
xk = xk.view(bsz, seqlen_y, self.n_local_kv_heads, self.head_dim)
|
|
xv = xv.view(bsz, seqlen_y, self.n_local_kv_heads, self.head_dim)
|
|
|
|
xk, xv = [tensor.transpose(1, 2) for tensor in (xk, xv)]
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
xk = xk.repeat_interleave(self.n_rep, dim=1)
|
|
xv = xv.repeat_interleave(self.n_rep, dim=1)
|
|
|
|
xk = self.k_norm(xk)
|
|
|
|
return torch.stack([xk, xv])
|
|
|
|
def compute_xattn_kv_cache(self, xattn_tokens: torch.Tensor) -> torch.Tensor:
|
|
return self._compute_xattn_kv_cache(xattn_tokens)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
xattn_mask: torch.Tensor,
|
|
full_text_row_masked_out_mask: torch.Tensor,
|
|
xattn_cache: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
xq = F.linear(x, self.wq.weight)
|
|
bsz, seqlen, _ = x.shape
|
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
xq = self.q_norm(xq)
|
|
xq = xq.transpose(1, 2)
|
|
|
|
xk, xv = xattn_cache
|
|
|
|
output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=xattn_mask, dropout_p=0.0)
|
|
output = output * full_text_row_masked_out_mask
|
|
output = output.transpose(1, 2).contiguous().reshape(bsz, seqlen, -1)
|
|
|
|
out = F.linear(output, self.wo.weight)
|
|
out = reduce_from_tensor_model_parallel_region(out)
|
|
return out
|
|
|
|
|
|
class CrossAttentionTransformerBlock(torch.nn.Module):
|
|
"""Cross-attention transformer block with tanh-gated attention and feedforward."""
|
|
|
|
def __init__(
|
|
self,
|
|
args: ModelArgs,
|
|
layer_id: int,
|
|
no_ffn: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.layer_id = layer_id
|
|
self.n_heads = args.n_heads
|
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
self.dim = args.dim
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.attention = CrossAttention(
|
|
dim=args.dim,
|
|
head_dim=self.head_dim,
|
|
n_heads=self.n_heads,
|
|
n_kv_heads=self.n_kv_heads,
|
|
norm_eps=args.norm_eps,
|
|
)
|
|
|
|
self.attention_norm = RMSNorm(
|
|
args.dim,
|
|
eps=args.norm_eps,
|
|
)
|
|
self.gate_attn = torch.nn.Parameter(torch.zeros(1))
|
|
|
|
self.feed_forward = FeedForward(
|
|
dim=args.dim,
|
|
hidden_dim=4 * args.dim,
|
|
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
|
multiple_of=args.multiple_of,
|
|
)
|
|
self.ffn_norm = RMSNorm(
|
|
args.dim,
|
|
eps=args.norm_eps,
|
|
)
|
|
self.gate_ffwd = torch.nn.Parameter(torch.zeros(1))
|
|
|
|
self.no_ffn = no_ffn
|
|
|
|
def compute_xattn_kv_cache(self, xattn_tokens: torch.Tensor) -> torch.Tensor:
|
|
return self.attention.compute_xattn_kv_cache(xattn_tokens)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
xattn_mask: torch.Tensor,
|
|
full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor],
|
|
xattn_cache: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
_attn_out = self.attention(
|
|
x=self.attention_norm(x),
|
|
xattn_mask=xattn_mask,
|
|
xattn_cache=xattn_cache,
|
|
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
)
|
|
h = x + self.gate_attn.tanh() * _attn_out
|
|
_ffn = self.feed_forward(self.ffn_norm(h))
|
|
_ffn = full_text_row_masked_out_mask[:, 0] * _ffn # type: ignore
|
|
h = h + self.gate_ffwd.tanh() * _ffn * float(not self.no_ffn)
|
|
return h
|
|
|
|
|
|
class DummyCrossAttentionTransformerBlock:
|
|
"""Dummy cross-attention transformer block with tanh-gated attention and feedforward."""
|
|
|
|
def __call__(
|
|
self,
|
|
x: torch.Tensor,
|
|
*args,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
return x
|
|
|
|
|
|
class DummySelfAttentionTransformerBlock:
|
|
"""Dummy self-attention transformer block"""
|
|
|
|
def __call__(
|
|
self,
|
|
x: torch.Tensor,
|
|
*args,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
return x
|
|
|
|
|
|
class CrossAttentionTransformerVision(torch.nn.Module):
|
|
def __init__(self, args: ModelArgs) -> None:
|
|
super().__init__()
|
|
return_intermediate = "3,7,15,23,30"
|
|
self.vision_input_dim = 1280
|
|
self.image_res = args.vision_chunk_size
|
|
self.max_num_chunks = args.vision_max_num_chunks
|
|
if return_intermediate is not None:
|
|
return_intermediate = [int(layer) for layer in return_intermediate.split(",")]
|
|
self.vision_input_dim = (len(return_intermediate) + 1) * self.vision_input_dim
|
|
self.patch_size = 14
|
|
self.vision_encoder = VisionEncoder(
|
|
max_num_tiles=4,
|
|
image_size=args.vision_chunk_size,
|
|
patch_size=self.patch_size,
|
|
n_global_layers=8,
|
|
global_model=True,
|
|
return_intermediate=return_intermediate,
|
|
)
|
|
# vision token projection
|
|
self.vision_projection = ColumnParallelLinear(
|
|
self.vision_input_dim,
|
|
args.dim,
|
|
bias=True,
|
|
init_method=lambda x: x,
|
|
)
|
|
|
|
def forward(self, images: torch.Tensor, aspect_ratios: torch.Tensor) -> torch.Tensor:
|
|
# vision_tokens: (B, T, D)
|
|
# aspect_ratios: (B, T)
|
|
# h: (B, T, D)
|
|
vision_tokens = self.vision_encoder(images.to(dtype=torch.get_default_dtype()), aspect_ratios)
|
|
|
|
vision_tokens = F.linear(vision_tokens, self.vision_projection.weight, self.vision_projection.bias)
|
|
vision_tokens = gather_from_tensor_model_parallel_region(vision_tokens)
|
|
return vision_tokens
|
|
|
|
|
|
class CrossAttentionTransformerText(torch.nn.Module):
|
|
INFERENCE_IMAGE_TOKEN_ID = 128010
|
|
|
|
def __init__(self, args: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.world_size = fs_init.get_model_parallel_world_size()
|
|
assert args.vocab_size > 0
|
|
self.vocab_size = args.vocab_size
|
|
self.n_layers = args.n_layers
|
|
self.dim = args.dim
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
self.n_local_kv_heads = self.n_kv_heads // self.world_size
|
|
assert self.vocab_size % self.world_size == 0
|
|
self.tok_embeddings = VocabParallelEmbedding(args.vocab_size, args.dim, init_method=lambda x: x)
|
|
self.pos_embeddings = None
|
|
# final norm layer (not necessary for post-norm)
|
|
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
# output layer
|
|
self.output = ColumnParallelLinear(args.dim, args.vocab_size, bias=False, init_method=lambda x: x)
|
|
|
|
self.n_llama_layers = args.n_layers
|
|
self.model_dim = args.dim
|
|
|
|
# BLOCKS
|
|
|
|
self.fusion_schedule = self._init_fusion_schedule(args.vision_num_cross_attention_layers)
|
|
self.learnable_embedding = VocabParallelEmbedding(
|
|
max(fs_init.get_model_parallel_world_size(), 8),
|
|
args.dim,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.num_frozen_embeddings = self.tok_embeddings.num_embeddings
|
|
self._thresh = self.num_frozen_embeddings - 1
|
|
|
|
# transformer blocks
|
|
self.layers = torch.nn.ModuleList()
|
|
self.cross_attention_layers = torch.nn.ModuleList()
|
|
for i in range(args.n_layers):
|
|
layer_id = i
|
|
block = TransformerBlock(args=args, layer_id=layer_id)
|
|
self.layers.append(block)
|
|
if layer_id in self.fusion_schedule:
|
|
xa_layer_id = self.fusion_schedule.index(layer_id) + args.n_layers
|
|
block = CrossAttentionTransformerBlock(
|
|
args,
|
|
layer_id=xa_layer_id,
|
|
)
|
|
self.cross_attention_layers.append(block)
|
|
|
|
# add xattn and dummy layers to avoid conditionals in forward()
|
|
self.text_and_xattn_layers = []
|
|
|
|
for idx, layer in enumerate(self.layers):
|
|
if idx in self.fusion_schedule:
|
|
xattn_layer_idx = self.fusion_schedule.index(idx)
|
|
xattn_layer = self.cross_attention_layers[xattn_layer_idx]
|
|
else:
|
|
xattn_layer_idx = 0
|
|
xattn_layer = DummyCrossAttentionTransformerBlock()
|
|
|
|
self.text_and_xattn_layers.append(
|
|
(
|
|
layer,
|
|
xattn_layer,
|
|
xattn_layer_idx,
|
|
)
|
|
)
|
|
self.freqs_cis = precompute_freqs_cis(
|
|
args.dim // args.n_heads,
|
|
args.max_seq_len * 2,
|
|
args.rope_theta,
|
|
args.use_scaled_rope,
|
|
)
|
|
|
|
self.args = args
|
|
self.cache_is_setup = False
|
|
self.max_seq_len = args.max_seq_len
|
|
|
|
def _init_fusion_schedule(
|
|
self,
|
|
num_layers: int,
|
|
) -> List[int]:
|
|
llama_layers = list(range(self.n_llama_layers))
|
|
|
|
# uniformly spread the layers
|
|
k = math.ceil(len(llama_layers) / num_layers)
|
|
return llama_layers[::-1][::k][:num_layers][::-1]
|
|
|
|
def get_partially_trainable_embedding(self, x):
|
|
xz = torch.zeros_like(x, device=x.device)
|
|
oz = torch.ones_like(x, device=x.device)
|
|
x_orig = torch.minimum(x, torch.tensor(self._thresh, device=x.device))
|
|
x_new = torch.maximum(x, torch.tensor(self._thresh + 1, device=x.device)) - self.num_frozen_embeddings
|
|
|
|
mask_orig = torch.where(x >= self.num_frozen_embeddings, xz, oz).unsqueeze(-1)
|
|
mask_new = torch.where(x < self.num_frozen_embeddings, xz, oz).unsqueeze(-1)
|
|
|
|
x_orig = self.tok_embeddings(x_orig)
|
|
x_new = self.learnable_embedding(x_new).type_as(x_orig)
|
|
return x_orig * mask_orig.type_as(x_orig) + x_new * mask_new.type_as(x_new)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.LongTensor,
|
|
h: torch.Tensor,
|
|
xattn_mask: torch.Tensor,
|
|
full_text_row_masked_out_mask: torch.Tensor,
|
|
xattn_caches: torch.Tensor,
|
|
text_only_inference: bool = False,
|
|
):
|
|
assert self.cache_is_setup, "Please set up cache before calling forward"
|
|
self.mask_cache = self.mask_cache.to(h.device)
|
|
self.freqs_cis = self.freqs_cis.to(h.device)
|
|
mask = self.mask_cache.index_select(2, position_ids)
|
|
freqs_cis = self.freqs_cis.index_select(0, position_ids)
|
|
|
|
for (
|
|
layer,
|
|
xattn_layer,
|
|
xattn_layer_idx,
|
|
) in self.text_and_xattn_layers:
|
|
if not text_only_inference:
|
|
h = xattn_layer(
|
|
x=h,
|
|
xattn_mask=xattn_mask,
|
|
xattn_cache=xattn_caches[xattn_layer_idx],
|
|
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
)
|
|
h = layer(
|
|
x=h,
|
|
mask=mask,
|
|
freqs_cis=freqs_cis,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
h = self.norm(h)
|
|
|
|
output = F.linear(h, self.output.weight)
|
|
output = gather_from_tensor_model_parallel_region(output)
|
|
return output.float()
|
|
|
|
def setup_cache(self, max_batch_size: int, device: torch.device, dtype=torch.bfloat16):
|
|
# Set up the text kv caches
|
|
ones = torch.ones(
|
|
(self.max_seq_len, self.max_seq_len),
|
|
dtype=torch.bool,
|
|
device=device,
|
|
)
|
|
self.register_buffer(
|
|
"mask_cache",
|
|
torch.tril(
|
|
ones,
|
|
)
|
|
.unsqueeze(0)
|
|
.unsqueeze(0),
|
|
persistent=False,
|
|
)
|
|
for layer in self.layers:
|
|
layer.setup_cache(max_batch_size, dtype=dtype)
|
|
self.cache_is_setup = True
|
|
|
|
def _get_xattn_mask(
|
|
self,
|
|
num_tokens,
|
|
text_device,
|
|
text_dtype,
|
|
vision_tokens,
|
|
cross_attention_masks,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
assert vision_tokens is not None, "Vision tokens must be provided"
|
|
vision_seqlen = vision_tokens.shape[3]
|
|
assert vision_tokens.shape[1] == cross_attention_masks.shape[2], (
|
|
f"Mismatch in number of images given and number of masks given {vision_tokens.shape} {cross_attention_masks.shape}"
|
|
)
|
|
assert vision_tokens.shape[2] == cross_attention_masks.shape[3], (
|
|
f"Vision tokens shape {vision_tokens.shape} mismatch with xattn shape {cross_attention_masks.shape}"
|
|
)
|
|
assert num_tokens == cross_attention_masks.shape[1], (
|
|
f"Mismatch in text sequence length and cross attention mask sequence length {num_tokens} {cross_attention_masks.shape}"
|
|
)
|
|
_, _, _, num_image_tokens, image_token_dim = tuple(vision_tokens.shape)
|
|
bsz, ntext, nimg, nchunks = cross_attention_masks.shape
|
|
cross_attention_masks = (
|
|
cross_attention_masks.repeat_interleave(vision_seqlen, dim=3).view(bsz, ntext, -1).unsqueeze(1)
|
|
)
|
|
full_text_row_masked_out_mask = _get_full_row_masked_out_mask(
|
|
cross_attention_masks,
|
|
get_negative_inf_value(cross_attention_masks.dtype),
|
|
)
|
|
cross_attention_masks *= full_text_row_masked_out_mask
|
|
|
|
return (
|
|
cross_attention_masks.to(device=text_device, dtype=text_dtype),
|
|
full_text_row_masked_out_mask.to(device=text_device),
|
|
)
|
|
|
|
|
|
class CrossAttentionTransformer(torch.nn.Module):
|
|
def __init__(self, args: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.params = args
|
|
|
|
self.model_dim = args.dim
|
|
self.vision_model = CrossAttentionTransformerVision(args)
|
|
self.text_model = CrossAttentionTransformerText(args)
|
|
self.image_res = args.vision_chunk_size
|
|
self.max_num_chunks = args.vision_max_num_chunks
|
|
self.image_transform = partial(
|
|
VariableSizeImageTransform(size=args.vision_chunk_size),
|
|
max_num_chunks=args.vision_max_num_chunks,
|
|
)
|
|
|
|
def setup_cache(self, max_batch_size: int, device: torch.device, dtype: torch.dtype):
|
|
self.text_model.setup_cache(max_batch_size, device, dtype)
|
|
|
|
def compute_vision_tokens_masks(
|
|
self,
|
|
batch_images: List[List[PIL_Image.Image]],
|
|
batch_masks: List[List[List[int]]],
|
|
total_len: int,
|
|
device: torch.device,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
skip_vision_encoder = False
|
|
|
|
assert len(batch_images) == len(batch_masks), "Images and masks must have the same length"
|
|
|
|
max_num_images = max(len(x) for x in batch_images)
|
|
bsz = len(batch_images)
|
|
|
|
if max_num_images == 0:
|
|
num_chunks = [[self.max_num_chunks] for _ in batch_images]
|
|
skip_vision_encoder = True
|
|
else:
|
|
images_and_aspect_ratios = [[self.image_transform(im) for im in row] for row in batch_images]
|
|
transformed_images = [[x[0] for x in row] for row in images_and_aspect_ratios]
|
|
|
|
aspect_ratios = torch.ones(bsz, max_num_images, 2, dtype=torch.int64)
|
|
for i, row in enumerate(images_and_aspect_ratios):
|
|
if len(row) > 0:
|
|
aspect_ratios[i, : len(row)] = torch.stack([torch.tensor(x[1]) for x in row])
|
|
|
|
stacked_images, num_chunks = _stack_images(
|
|
transformed_images,
|
|
max_num_chunks=self.max_num_chunks,
|
|
image_res=self.params.vision_chunk_size,
|
|
max_num_images=max_num_images,
|
|
)
|
|
stacked_images = stacked_images.to(device=device)
|
|
|
|
if skip_vision_encoder:
|
|
vision_tokens = torch.zeros(
|
|
(
|
|
bsz,
|
|
max_num_images,
|
|
self.max_num_chunks,
|
|
int((self.vision_model.image_res / self.vision_model.patch_size) ** 2 + 1),
|
|
self.model_dim,
|
|
),
|
|
)
|
|
else:
|
|
vision_tokens = self.vision_model(stacked_images, aspect_ratios).to(device=device)
|
|
|
|
bsz, nimg, nchunk, ntok, image_token_dim = tuple(vision_tokens.shape)
|
|
xattn_caches = torch.stack(
|
|
[
|
|
layer.compute_xattn_kv_cache(vision_tokens.view(bsz, -1, image_token_dim))
|
|
for layer in self.text_model.cross_attention_layers
|
|
]
|
|
)
|
|
padded_masks = _pad_masks(
|
|
batch_masks,
|
|
num_chunks,
|
|
total_len,
|
|
self.max_num_chunks,
|
|
)
|
|
|
|
cross_attention_masks, full_text_row_masked_out_mask = self.text_model._get_xattn_mask(
|
|
num_tokens=total_len,
|
|
text_device=vision_tokens.device.type,
|
|
text_dtype=next(self.text_model.parameters()).dtype,
|
|
vision_tokens=vision_tokens,
|
|
cross_attention_masks=padded_masks,
|
|
)
|
|
|
|
return (xattn_caches, cross_attention_masks, full_text_row_masked_out_mask)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
tokens: torch.Tensor,
|
|
cross_attention_masks: torch.Tensor,
|
|
full_text_row_masked_out_mask: torch.Tensor,
|
|
xattn_caches: torch.Tensor,
|
|
text_only_inference: bool = False,
|
|
) -> torch.Tensor:
|
|
h = self.text_model.get_partially_trainable_embedding(tokens[:, position_ids])
|
|
logits = self.text_model.forward(
|
|
position_ids=position_ids,
|
|
h=h,
|
|
xattn_mask=cross_attention_masks[:, :, position_ids],
|
|
full_text_row_masked_out_mask=full_text_row_masked_out_mask[:, :, position_ids],
|
|
xattn_caches=xattn_caches,
|
|
text_only_inference=text_only_inference,
|
|
)
|
|
return logits
|
|
|
|
|
|
def _stack_images(
|
|
images: List[List[PIL_Image.Image]],
|
|
max_num_chunks: int,
|
|
image_res: int,
|
|
max_num_images: int,
|
|
) -> Tuple[torch.Tensor, List[int]]:
|
|
"""
|
|
Takes a list of list of images and stacks them into a tensor.
|
|
This function is needed since images can be of completely
|
|
different resolutions and aspect ratios.
|
|
"""
|
|
out_images, out_num_chunks = [], []
|
|
for imgs_sample in images:
|
|
out_images_i = torch.zeros(
|
|
max_num_images,
|
|
max_num_chunks,
|
|
3,
|
|
image_res,
|
|
image_res,
|
|
)
|
|
_num_chunks = []
|
|
for j, chunks_image in enumerate(imgs_sample):
|
|
out_images_i[j, : chunks_image.shape[0]] = chunks_image
|
|
_num_chunks.append(chunks_image.shape[0])
|
|
out_images.append(out_images_i)
|
|
out_num_chunks.append(_num_chunks)
|
|
return torch.stack(out_images), out_num_chunks
|
|
|
|
|
|
def _pad_masks(
|
|
all_masks: List[List[List[int]]],
|
|
all_num_chunks: List[List[int]],
|
|
total_len: int,
|
|
max_num_chunks: int,
|
|
) -> torch.Tensor:
|
|
dtype = torch.get_default_dtype()
|
|
inf_value = get_negative_inf_value(dtype)
|
|
|
|
bsz = len(all_masks)
|
|
max_num_media = max([len(m) for m in all_masks])
|
|
|
|
out_masks = torch.full(
|
|
(bsz, total_len, max_num_media, max_num_chunks),
|
|
inf_value,
|
|
dtype=dtype,
|
|
)
|
|
|
|
for idx, (mask, num_chunks) in enumerate(zip(all_masks, all_num_chunks, strict=False)):
|
|
for mask_idx, (mask_elem, mask_num_chunks) in enumerate(zip(mask, num_chunks, strict=False)):
|
|
if len(mask_elem) == 2:
|
|
mask_elem[1] = min(mask_elem[1], total_len)
|
|
if mask_elem[1] == -1:
|
|
mask_elem[1] = total_len
|
|
out_masks[idx, mask_elem[0] : mask_elem[1], mask_idx, :mask_num_chunks].fill_(0.0)
|
|
|
|
return out_masks
|