forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Move around bits. This makes the copies from llama-models _much_ easier to maintain and ensures we don't entangle meta-reference specific tidbits into llama-models code even by accident. Also, kills the meta-reference-quantized-gpu distro and rolls quantization deps into meta-reference-gpu. ## Test Plan ``` LLAMA_MODELS_DEBUG=1 \ with-proxy llama stack run meta-reference-gpu \ --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \ --env INFERENCE_CHECKPOINT_DIR=<DIR> \ --env MODEL_PARALLEL_SIZE=4 \ --env QUANTIZATION_TYPE=fp8_mixed ``` Start a server with and without quantization. Point integration tests to it using: ``` pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct ```
58 lines
2.1 KiB
Python
58 lines
2.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# top-level folder for each specific model found within the models/ directory at
|
|
# the top-level of this source tree.
|
|
|
|
from typing import Any, Dict, List
|
|
|
|
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
|
|
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
hidden_dim: int,
|
|
do_reduce: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.do_reduce = do_reduce
|
|
|
|
self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x)
|
|
self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
|
|
def load_hook(
|
|
self,
|
|
state_dict: Dict[str, Any],
|
|
prefix: str,
|
|
local_metadata: Dict[str, Any],
|
|
strict: bool,
|
|
missing_keys: List[str],
|
|
unexpected_keys: List[str],
|
|
error_msgs: List[str],
|
|
) -> None:
|
|
if prefix + "mlp.fc1_weight" in state_dict:
|
|
w1, w3 = state_dict.pop(prefix + "mlp.fc1_weight").chunk(2, dim=0)
|
|
state_dict[prefix + "w1.weight"] = w1
|
|
state_dict[prefix + "w3.weight"] = w3
|
|
state_dict[prefix + "w2.weight"] = state_dict.pop(prefix + "mlp.fc2_weight")
|
|
|
|
def forward(self, x):
|
|
x = F.silu(F.linear(x, self.w1.weight)) * F.linear(x, self.w3.weight)
|
|
out = F.linear(x, self.w2.weight)
|
|
if self.do_reduce:
|
|
return reduce_from_model_parallel_region(out)
|
|
return out
|