forked from phoenix-oss/llama-stack-mirror
97 lines
3 KiB
Python
97 lines
3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
from typing import Any, Callable, Generator
|
|
|
|
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
|
|
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
ChatCompletionRequestWithRawContent,
|
|
CompletionRequestWithRawContent,
|
|
)
|
|
|
|
from .parallel_utils import ModelParallelProcessGroup
|
|
|
|
|
|
class ModelRunner:
|
|
def __init__(self, llama):
|
|
self.llama = llama
|
|
|
|
# the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()`
|
|
def __call__(self, req: Any):
|
|
if isinstance(req, ChatCompletionRequestWithRawContent):
|
|
return self.llama.chat_completion(req)
|
|
elif isinstance(req, CompletionRequestWithRawContent):
|
|
return self.llama.completion(req)
|
|
else:
|
|
raise ValueError(f"Unexpected task type {type(req)}")
|
|
|
|
|
|
def init_model_cb(
|
|
builder_fn: Callable,
|
|
params: list[Any],
|
|
):
|
|
llama = builder_fn(*params)
|
|
return ModelRunner(llama)
|
|
|
|
|
|
class LlamaModelParallelGenerator:
|
|
"""
|
|
This abstraction exists so
|
|
- we can run model parallel code without needing to run the CLIs via torchrun
|
|
- this also enables use model parallel code within a notebook context.
|
|
|
|
A Context Manager is used to ensure that the model parallel process is started and stopped
|
|
correctly. This does make the ergonomics a little awkward, because it isn't immediately
|
|
clear at the callsite why we need to use a context manager.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_parallel_size: int,
|
|
builder_fn: Callable,
|
|
builder_params: list[Any],
|
|
formatter: Llama3ChatFormat | Llama4ChatFormat,
|
|
):
|
|
self.model_parallel_size = model_parallel_size
|
|
self.builder_fn = builder_fn
|
|
self.builder_params = builder_params
|
|
self.formatter = formatter
|
|
|
|
def start(self):
|
|
self.__enter__()
|
|
|
|
def stop(self):
|
|
self.__exit__(None, None, None)
|
|
|
|
def __enter__(self):
|
|
self.group = ModelParallelProcessGroup(
|
|
self.model_parallel_size,
|
|
init_model_cb=partial(init_model_cb, self.builder_fn, self.builder_params),
|
|
)
|
|
self.group.start()
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, exc_traceback):
|
|
self.group.stop()
|
|
|
|
def completion(
|
|
self,
|
|
request: CompletionRequestWithRawContent,
|
|
) -> Generator:
|
|
req_obj = deepcopy(request)
|
|
gen = self.group.run_inference(req_obj)
|
|
yield from gen
|
|
|
|
def chat_completion(
|
|
self,
|
|
request: ChatCompletionRequestWithRawContent,
|
|
) -> Generator:
|
|
req_obj = deepcopy(request)
|
|
gen = self.group.run_inference(req_obj)
|
|
yield from gen
|