forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Move around bits. This makes the copies from llama-models _much_ easier to maintain and ensures we don't entangle meta-reference specific tidbits into llama-models code even by accident. Also, kills the meta-reference-quantized-gpu distro and rolls quantization deps into meta-reference-gpu. ## Test Plan ``` LLAMA_MODELS_DEBUG=1 \ with-proxy llama stack run meta-reference-gpu \ --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \ --env INFERENCE_CHECKPOINT_DIR=<DIR> \ --env MODEL_PARALLEL_SIZE=4 \ --env QUANTIZATION_TYPE=fp8_mixed ``` Start a server with and without quantization. Point integration tests to it using: ``` pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct ```
265 lines
9.9 KiB
Python
265 lines
9.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
import warnings
|
|
from functools import lru_cache
|
|
from typing import AsyncIterator, List, Optional, Union
|
|
|
|
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
TextContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
)
|
|
from llama_stack.models.llama.datatypes import ToolPromptFormat
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_openai_chat_completion_choice,
|
|
convert_openai_chat_completion_stream,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
|
|
|
|
from . import NVIDIAConfig
|
|
from .models import MODEL_ENTRIES
|
|
from .openai_utils import (
|
|
convert_chat_completion_request,
|
|
convert_completion_request,
|
|
convert_openai_completion_choice,
|
|
convert_openai_completion_stream,
|
|
)
|
|
from .utils import _is_nvidia_hosted
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|
def __init__(self, config: NVIDIAConfig) -> None:
|
|
# TODO(mf): filter by available models
|
|
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
|
|
|
logger.info(f"Initializing NVIDIAInferenceAdapter({config.url})...")
|
|
|
|
if _is_nvidia_hosted(config):
|
|
if not config.api_key:
|
|
raise RuntimeError(
|
|
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
|
|
)
|
|
# elif self._config.api_key:
|
|
#
|
|
# we don't raise this warning because a user may have deployed their
|
|
# self-hosted NIM with an API key requirement.
|
|
#
|
|
# warnings.warn(
|
|
# "API key is not required for self-hosted NVIDIA NIM. "
|
|
# "Consider removing the api_key from the configuration."
|
|
# )
|
|
|
|
self._config = config
|
|
|
|
@lru_cache # noqa: B019
|
|
def _get_client(self, provider_model_id: str) -> AsyncOpenAI:
|
|
"""
|
|
For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However,
|
|
some models are hosted on different URLs. This function returns the appropriate client
|
|
for the given provider_model_id.
|
|
|
|
This relies on lru_cache and self._default_client to avoid creating a new client for each request
|
|
or for each model that is hosted on https://integrate.api.nvidia.com/v1.
|
|
|
|
:param provider_model_id: The provider model ID
|
|
:return: An OpenAI client
|
|
"""
|
|
|
|
@lru_cache # noqa: B019
|
|
def _get_client_for_base_url(base_url: str) -> AsyncOpenAI:
|
|
"""
|
|
Maintain a single OpenAI client per base_url.
|
|
"""
|
|
return AsyncOpenAI(
|
|
base_url=base_url,
|
|
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
|
timeout=self._config.timeout,
|
|
)
|
|
|
|
special_model_urls = {
|
|
"meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct",
|
|
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
|
|
}
|
|
|
|
base_url = f"{self._config.url}/v1"
|
|
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
|
|
base_url = special_model_urls[provider_model_id]
|
|
|
|
return _get_client_for_base_url(base_url)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
if content_has_media(content):
|
|
raise NotImplementedError("Media is not supported")
|
|
|
|
# ToDo: check health of NeMo endpoints and enable this
|
|
# removing this health check as NeMo customizer endpoint health check is returning 404
|
|
# await check_health(self._config) # this raises errors
|
|
|
|
provider_model_id = self.get_provider_model_id(model_id)
|
|
request = convert_completion_request(
|
|
request=CompletionRequest(
|
|
model=provider_model_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
),
|
|
n=1,
|
|
)
|
|
|
|
try:
|
|
response = await self._get_client(provider_model_id).completions.create(**request)
|
|
except APIConnectionError as e:
|
|
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
|
|
|
if stream:
|
|
return convert_openai_completion_stream(response)
|
|
else:
|
|
# we pass n=1 to get only one completion
|
|
return convert_openai_completion_choice(response.choices[0])
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
if any(content_has_media(content) for content in contents):
|
|
raise NotImplementedError("Media is not supported")
|
|
|
|
#
|
|
# Llama Stack: contents = List[str] | List[InterleavedContentItem]
|
|
# ->
|
|
# OpenAI: input = str | List[str]
|
|
#
|
|
# we can ignore str and always pass List[str] to OpenAI
|
|
#
|
|
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
|
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
|
model = self.get_provider_model_id(model_id)
|
|
|
|
extra_body = {}
|
|
|
|
if text_truncation is not None:
|
|
text_truncation_options = {
|
|
TextTruncation.none: "NONE",
|
|
TextTruncation.end: "END",
|
|
TextTruncation.start: "START",
|
|
}
|
|
extra_body["truncate"] = text_truncation_options[text_truncation]
|
|
|
|
if output_dimension is not None:
|
|
extra_body["dimensions"] = output_dimension
|
|
|
|
if task_type is not None:
|
|
task_type_options = {
|
|
EmbeddingTaskType.document: "passage",
|
|
EmbeddingTaskType.query: "query",
|
|
}
|
|
extra_body["input_type"] = task_type_options[task_type]
|
|
|
|
try:
|
|
response = await self._get_client(model).embeddings.create(
|
|
model=model,
|
|
input=input,
|
|
extra_body=extra_body,
|
|
)
|
|
except BadRequestError as e:
|
|
raise ValueError(f"Failed to get embeddings: {e}") from e
|
|
|
|
#
|
|
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)
|
|
# ->
|
|
# Llama Stack: EmbeddingsResponse(embeddings=List[List[float]])
|
|
#
|
|
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
if tool_prompt_format:
|
|
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring", stacklevel=2)
|
|
|
|
# await check_health(self._config) # this raises errors
|
|
|
|
provider_model_id = self.get_provider_model_id(model_id)
|
|
request = await convert_chat_completion_request(
|
|
request=ChatCompletionRequest(
|
|
model=self.get_provider_model_id(model_id),
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
tools=tools,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
),
|
|
n=1,
|
|
)
|
|
|
|
try:
|
|
response = await self._get_client(provider_model_id).chat.completions.create(**request)
|
|
except APIConnectionError as e:
|
|
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
|
|
|
if stream:
|
|
return convert_openai_chat_completion_stream(response, enable_incremental_tool_calls=False)
|
|
else:
|
|
# we pass n=1 to get only one completion
|
|
return convert_openai_chat_completion_choice(response.choices[0])
|