llama-stack/llama_stack/providers/remote/inference/nvidia/nvidia.py
Ashwin Bharambe 530d4bdfe1
refactor: move all llama code to models/llama out of meta reference (#1887)
# What does this PR do?

Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.

Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.

## Test Plan

```
LLAMA_MODELS_DEBUG=1 \
  with-proxy llama stack run meta-reference-gpu \
  --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
   --env INFERENCE_CHECKPOINT_DIR=<DIR> \
   --env MODEL_PARALLEL_SIZE=4 \
   --env QUANTIZATION_TYPE=fp8_mixed
```

Start a server with and without quantization. Point integration tests to
it using:

```
pytest -s -v  tests/integration/inference/test_text_inference.py \
   --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
2025-04-07 15:03:58 -07:00

265 lines
9.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import warnings
from functools import lru_cache
from typing import AsyncIterator, List, Optional, Union
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
TextContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
)
from llama_stack.models.llama.datatypes import ToolPromptFormat
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
)
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
from . import NVIDIAConfig
from .models import MODEL_ENTRIES
from .openai_utils import (
convert_chat_completion_request,
convert_completion_request,
convert_openai_completion_choice,
convert_openai_completion_stream,
)
from .utils import _is_nvidia_hosted
logger = logging.getLogger(__name__)
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
def __init__(self, config: NVIDIAConfig) -> None:
# TODO(mf): filter by available models
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
logger.info(f"Initializing NVIDIAInferenceAdapter({config.url})...")
if _is_nvidia_hosted(config):
if not config.api_key:
raise RuntimeError(
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
)
# elif self._config.api_key:
#
# we don't raise this warning because a user may have deployed their
# self-hosted NIM with an API key requirement.
#
# warnings.warn(
# "API key is not required for self-hosted NVIDIA NIM. "
# "Consider removing the api_key from the configuration."
# )
self._config = config
@lru_cache # noqa: B019
def _get_client(self, provider_model_id: str) -> AsyncOpenAI:
"""
For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However,
some models are hosted on different URLs. This function returns the appropriate client
for the given provider_model_id.
This relies on lru_cache and self._default_client to avoid creating a new client for each request
or for each model that is hosted on https://integrate.api.nvidia.com/v1.
:param provider_model_id: The provider model ID
:return: An OpenAI client
"""
@lru_cache # noqa: B019
def _get_client_for_base_url(base_url: str) -> AsyncOpenAI:
"""
Maintain a single OpenAI client per base_url.
"""
return AsyncOpenAI(
base_url=base_url,
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
timeout=self._config.timeout,
)
special_model_urls = {
"meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct",
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
}
base_url = f"{self._config.url}/v1"
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
base_url = special_model_urls[provider_model_id]
return _get_client_for_base_url(base_url)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
if sampling_params is None:
sampling_params = SamplingParams()
if content_has_media(content):
raise NotImplementedError("Media is not supported")
# ToDo: check health of NeMo endpoints and enable this
# removing this health check as NeMo customizer endpoint health check is returning 404
# await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
request = convert_completion_request(
request=CompletionRequest(
model=provider_model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
),
n=1,
)
try:
response = await self._get_client(provider_model_id).completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
if stream:
return convert_openai_completion_stream(response)
else:
# we pass n=1 to get only one completion
return convert_openai_completion_choice(response.choices[0])
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
) -> EmbeddingsResponse:
if any(content_has_media(content) for content in contents):
raise NotImplementedError("Media is not supported")
#
# Llama Stack: contents = List[str] | List[InterleavedContentItem]
# ->
# OpenAI: input = str | List[str]
#
# we can ignore str and always pass List[str] to OpenAI
#
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
model = self.get_provider_model_id(model_id)
extra_body = {}
if text_truncation is not None:
text_truncation_options = {
TextTruncation.none: "NONE",
TextTruncation.end: "END",
TextTruncation.start: "START",
}
extra_body["truncate"] = text_truncation_options[text_truncation]
if output_dimension is not None:
extra_body["dimensions"] = output_dimension
if task_type is not None:
task_type_options = {
EmbeddingTaskType.document: "passage",
EmbeddingTaskType.query: "query",
}
extra_body["input_type"] = task_type_options[task_type]
try:
response = await self._get_client(model).embeddings.create(
model=model,
input=input,
extra_body=extra_body,
)
except BadRequestError as e:
raise ValueError(f"Failed to get embeddings: {e}") from e
#
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)
# ->
# Llama Stack: EmbeddingsResponse(embeddings=List[List[float]])
#
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
if sampling_params is None:
sampling_params = SamplingParams()
if tool_prompt_format:
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring", stacklevel=2)
# await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
request = await convert_chat_completion_request(
request=ChatCompletionRequest(
model=self.get_provider_model_id(model_id),
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
tools=tools,
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
),
n=1,
)
try:
response = await self._get_client(provider_model_id).chat.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
if stream:
return convert_openai_chat_completion_stream(response, enable_incremental_tool_calls=False)
else:
# we pass n=1 to get only one completion
return convert_openai_chat_completion_choice(response.choices[0])