llama-stack/llama_stack/providers/utils/inference/__init__.py
Ashwin Bharambe 530d4bdfe1
refactor: move all llama code to models/llama out of meta reference (#1887)
# What does this PR do?

Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.

Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.

## Test Plan

```
LLAMA_MODELS_DEBUG=1 \
  with-proxy llama stack run meta-reference-gpu \
  --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
   --env INFERENCE_CHECKPOINT_DIR=<DIR> \
   --env MODEL_PARALLEL_SIZE=4 \
   --env QUANTIZATION_TYPE=fp8_mixed
```

Start a server with and without quantization. Point integration tests to
it using:

```
pytest -s -v  tests/integration/inference/test_text_inference.py \
   --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
2025-04-07 15:03:58 -07:00

36 lines
1.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.models.llama.sku_types import * # noqa: F403
def is_supported_safety_model(model: Model) -> bool:
if model.quantization_format != CheckpointQuantizationFormat.bf16:
return False
model_id = model.core_model_id
return model_id in [
CoreModelId.llama_guard_3_8b,
CoreModelId.llama_guard_3_1b,
CoreModelId.llama_guard_3_11b_vision,
]
def supported_inference_models() -> List[Model]:
return [
m
for m in all_registered_models()
if (
m.model_family in {ModelFamily.llama3_1, ModelFamily.llama3_2, ModelFamily.llama3_3, ModelFamily.llama4}
or is_supported_safety_model(m)
)
]
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR = {m.huggingface_repo: m.descriptor() for m in all_registered_models()}