llama-stack/scripts/generate_prompt_format.py
Ashwin Bharambe 530d4bdfe1
refactor: move all llama code to models/llama out of meta reference (#1887)
# What does this PR do?

Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.

Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.

## Test Plan

```
LLAMA_MODELS_DEBUG=1 \
  with-proxy llama stack run meta-reference-gpu \
  --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
   --env INFERENCE_CHECKPOINT_DIR=<DIR> \
   --env MODEL_PARALLEL_SIZE=4 \
   --env QUANTIZATION_TYPE=fp8_mixed
```

Start a server with and without quantization. Point integration tests to
it using:

```
pytest -s -v  tests/integration/inference/test_text_inference.py \
   --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
2025-04-07 15:03:58 -07:00

67 lines
1.8 KiB
Python
Executable file

#!/usr/bin/env python
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Run this script:
# torchrun --nproc_per_node=8 scripts/generate_prompt_format.py meta-llama/Llama-4-17B-Omni-Instruct-BF16-16E ~/.llama/checkpoints/Llama-4-17B-Omni-Instruct-BF16-16E/ llama_stack.models.llama.llama4.prompts llama_stack/models/llama/llama4/prompt_format.md
import importlib
import os
from pathlib import Path
import fire
from llama_stack.models.llama.llama3.generation import Llama3
from llama_stack.models.llama.llama4.generation import Llama4
from llama_stack.models.llama.sku_list import resolve_model
THIS_DIR = Path(__file__).parent.resolve()
def run_main(
model_id: str,
checkpoint_dir: str,
module_name: str,
output_path: str,
llama4: bool = True,
):
module = importlib.import_module(module_name)
assert hasattr(module, "usecases"), f"Module {module_name} missing usecases function"
llama_model = resolve_model(model_id)
if not llama_model:
raise ValueError(f"Model {model_id} not found")
cls = Llama4 if llama4 else Llama3
generator = cls.build(
ckpt_dir=checkpoint_dir,
max_seq_len=4096,
max_batch_size=1,
)
use_cases = module.usecases()
text = ""
for u in use_cases:
if isinstance(u, str):
use_case_text = f"\n{u}\n"
else:
use_case_text = u.to_text(generator)
text += use_case_text
print(use_case_text)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, "w") as f:
f.write(text)
def main():
fire.Fire(run_main)
if __name__ == "__main__":
main()