llama-stack/tests/integration
Ashwin Bharambe 530d4bdfe1
refactor: move all llama code to models/llama out of meta reference (#1887)
# What does this PR do?

Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.

Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.

## Test Plan

```
LLAMA_MODELS_DEBUG=1 \
  with-proxy llama stack run meta-reference-gpu \
  --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
   --env INFERENCE_CHECKPOINT_DIR=<DIR> \
   --env MODEL_PARALLEL_SIZE=4 \
   --env QUANTIZATION_TYPE=fp8_mixed
```

Start a server with and without quantization. Point integration tests to
it using:

```
pytest -s -v  tests/integration/inference/test_text_inference.py \
   --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
2025-04-07 15:03:58 -07:00
..
agents feat: introduce llama4 support (#1877) 2025-04-05 11:53:35 -07:00
datasets feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
eval fix: fix jobs api literal return type (#1757) 2025-03-21 14:04:21 -07:00
fixtures test: turn off recordable mock for now (#1616) 2025-03-13 13:18:08 -07:00
inference feat: make multi-turn tool call tests work with llama4 (#1886) 2025-04-06 19:14:21 -07:00
inspect test: add inspect unit test (#1417) 2025-03-10 15:36:18 -07:00
post_training refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401) 2025-03-04 14:53:47 -08:00
providers fix: a couple of tests were broken and not yet exercised by our per-PR test workflow 2025-03-21 12:12:14 -07:00
safety fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
scoring feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
telemetry fix(telemetry): library client does not log span (#1833) 2025-03-29 14:55:31 -07:00
test_cases feat: make multi-turn tool call tests work with llama4 (#1886) 2025-04-06 19:14:21 -07:00
tool_runtime refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401) 2025-03-04 14:53:47 -08:00
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py fix: sleep between tests oof 2025-03-14 14:45:37 -07:00
metadata.py refactor: tests/unittests -> tests/unit; tests/api -> tests/integration 2025-03-04 09:57:00 -08:00
README.md docs: Update readme for integration tests (#1846) 2025-03-31 22:00:02 +02:00
report.py refactor: move all llama code to models/llama out of meta reference (#1887) 2025-04-07 15:03:58 -07:00

Llama Stack Integration Tests

We use pytest for parameterizing and running tests. You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have three ways to point to a stack:
    • a URL which points to a Llama Stack distribution server
    • a template (e.g., fireworks, together) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Experimental, under development, options:

  • --record-responses: record new API responses instead of using cached ones
  • --report: path where the test report should be written, e.g. --report=/path/to/report.md

Examples

Run all text inference tests with the together distribution:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Run all text inference tests with the together distribution and meta-llama/Llama-3.1-8B-Instruct:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Running all inference tests for a number of models:

TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
export TOGETHER_API_KEY=<together_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=together \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks for inference):

export FIREWORKS_API_KEY=<fireworks_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=fireworks \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Running Vector IO tests for a number of embedding models:

EMBEDDING_MODELS=all-MiniLM-L6-v2

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
   --embedding-model=$EMBEDDING_MODELS