forked from phoenix-oss/llama-stack-mirror
* API Keys passed from Client instead of distro configuration * delete distribution registry * Rename the "package" word away * Introduce a "Router" layer for providers Some providers need to be factorized and considered as thin routing layers on top of other providers. Consider two examples: - The inference API should be a routing layer over inference providers, routed using the "model" key - The memory banks API is another instance where various memory bank types will be provided by independent providers (e.g., a vector store is served by Chroma while a keyvalue memory can be served by Redis or PGVector) This commit introduces a generalized routing layer for this purpose. * update `apis_to_serve` * llama_toolchain -> llama_stack * Codemod from llama_toolchain -> llama_stack - added providers/registry - cleaned up api/ subdirectories and moved impls away - restructured api/api.py - from llama_stack.apis.<api> import foo should work now - update imports to do llama_stack.apis.<api> - update many other imports - added __init__, fixed some registry imports - updated registry imports - create_agentic_system -> create_agent - AgenticSystem -> Agent * Moved some stuff out of common/; re-generated OpenAPI spec * llama-toolchain -> llama-stack (hyphens) * add control plane API * add redis adapter + sqlite provider * move core -> distribution * Some more toolchain -> stack changes * small naming shenanigans * Removing custom tool and agent utilities and moving them client side * Move control plane to distribution server for now * Remove control plane from API list * no codeshield dependency randomly plzzzzz * Add "fire" as a dependency * add back event loggers * stack configure fixes * use brave instead of bing in the example client * add init file so it gets packaged * add init files so it gets packaged * Update MANIFEST * bug fix --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Xi Yan <xiyan@meta.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
110 lines
3.4 KiB
Python
110 lines
3.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
from copy import deepcopy
|
|
from dataclasses import dataclass
|
|
from functools import partial
|
|
from typing import Generator, List, Optional
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import Message, ToolPromptFormat
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from .config import MetaReferenceImplConfig
|
|
from .generation import Llama, model_checkpoint_dir
|
|
from .parallel_utils import ModelParallelProcessGroup
|
|
|
|
|
|
@dataclass
|
|
class InferenceArgs:
|
|
messages: List[Message]
|
|
temperature: float
|
|
top_p: float
|
|
max_gen_len: int
|
|
logprobs: bool
|
|
tool_prompt_format: ToolPromptFormat
|
|
|
|
|
|
class ModelRunner:
|
|
def __init__(self, llama):
|
|
self.llama = llama
|
|
|
|
# the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()`
|
|
def __call__(self, task: InferenceArgs):
|
|
return self.llama.chat_completion(
|
|
task.messages,
|
|
task.temperature,
|
|
task.top_p,
|
|
task.max_gen_len,
|
|
task.logprobs,
|
|
task.tool_prompt_format,
|
|
)
|
|
|
|
|
|
def init_model_cb(config: MetaReferenceImplConfig):
|
|
llama = Llama.build(config)
|
|
return ModelRunner(llama)
|
|
|
|
|
|
class LlamaModelParallelGenerator:
|
|
"""
|
|
This abstraction exists so
|
|
- we can run model parallel code without needing to run the CLIs via torchrun
|
|
- this also enables use model parallel code within a notebook context.
|
|
|
|
A Context Manager is used to ensure that the model parallel process is started and stopped
|
|
correctly. This does make the ergonomics a little awkward, because it isn't immediately
|
|
clear at the callsite why we need to use a context manager.
|
|
"""
|
|
|
|
def __init__(self, config: MetaReferenceImplConfig):
|
|
self.config = config
|
|
self.model = resolve_model(self.config.model)
|
|
# this is a hack because Agent's loop uses this to tokenize and check if input is too long
|
|
# while the tool-use loop is going
|
|
checkpoint_dir = model_checkpoint_dir(self.model)
|
|
tokenizer_path = os.path.join(checkpoint_dir, "tokenizer.model")
|
|
self.formatter = ChatFormat(Tokenizer(tokenizer_path))
|
|
|
|
def start(self):
|
|
self.__enter__()
|
|
|
|
def stop(self):
|
|
self.__exit__(None, None, None)
|
|
|
|
def __enter__(self):
|
|
self.group = ModelParallelProcessGroup(
|
|
self.config.model_parallel_size,
|
|
init_model_cb=partial(init_model_cb, self.config),
|
|
)
|
|
self.group.start()
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, exc_traceback):
|
|
self.group.stop()
|
|
|
|
def chat_completion(
|
|
self,
|
|
messages: List[Message],
|
|
temperature: float = 0.6,
|
|
top_p: float = 0.9,
|
|
max_gen_len: Optional[int] = None,
|
|
logprobs: bool = False,
|
|
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
|
|
) -> Generator:
|
|
req_obj = InferenceArgs(
|
|
messages=deepcopy(messages),
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
max_gen_len=max_gen_len,
|
|
logprobs=logprobs,
|
|
tool_prompt_format=tool_prompt_format,
|
|
)
|
|
|
|
gen = self.group.run_inference(req_obj)
|
|
yield from gen
|