llama-stack/llama_toolchain/inference/adapters/together/together.py
Xi Yan 5712566061
Remove request wrapper migration (#64)
* [1/n] migrate inference/chat_completion

* migrate inference/completion

* inference/completion

* inference regenerate openapi spec

* safety api

* migrate agentic system

* migrate apis without implementations

* re-generate openapi spec

* remove hack from openapi generator

* fix inference

* fix inference

* openapi generator rerun

* Simplified Telemetry API and tying it to logger (#57)

* Simplified Telemetry API and tying it to logger

* small update which adds a METRIC type

* move span events one level down into structured log events

---------

Co-authored-by: Ashwin Bharambe <ashwin@meta.com>

* fix api to work with openapi generator

* fix agentic calling inference

* together adapter inference

* update inference adapters

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
2024-09-12 15:03:49 -07:00

251 lines
9.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from together import Together
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.inference.prepare_messages import prepare_messages
from .config import TogetherImplConfig
TOGETHER_SUPPORTED_MODELS = {
"Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
"Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
"Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
}
class TogetherInferenceAdapter(Inference):
def __init__(self, config: TogetherImplConfig) -> None:
self.config = config
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> Together:
return Together(api_key=self.config.api_key)
async def initialize(self) -> None:
return
async def shutdown(self) -> None:
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_together_messages(self, messages: list[Message]) -> list:
together_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
together_messages.append({"role": role, "content": message.content})
return together_messages
def resolve_together_model(self, model_name: str) -> str:
model = resolve_model(model_name)
assert (
model is not None
and model.descriptor(shorten_default_variant=True)
in TOGETHER_SUPPORTED_MODELS
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(TOGETHER_SUPPORTED_MODELS.keys())}"
return TOGETHER_SUPPORTED_MODELS.get(
model.descriptor(shorten_default_variant=True)
)
def get_together_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = list(),
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
# accumulate sampling params and other options to pass to together
options = self.get_together_chat_options(request)
together_model = self.resolve_together_model(request.model)
messages = prepare_messages(request)
if not request.stream:
# TODO: might need to add back an async here
r = self.client.chat.completions.create(
model=together_model,
messages=self._messages_to_together_messages(messages),
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if (
r.choices[0].finish_reason == "stop"
or r.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
for chunk in self.client.chat.completions.create(
model=together_model,
messages=self._messages_to_together_messages(messages),
stream=True,
**options,
):
if chunk.choices[0].finish_reason:
if (
stop_reason is None and chunk.choices[0].finish_reason == "stop"
) or (
stop_reason is None and chunk.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
text = chunk.choices[0].delta.content
if text is None:
continue
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)