llama-stack/tests/client-sdk/vector_io/test_vector_io.py
Sixian Yi 597869a2aa
add distro report (#847)
# What does this PR do?

Generate distro reports to cover inference, agents, and vector_io. 


## Test Plan

Report generated through `/opt/miniconda3/envs/stack/bin/pytest -s -v
tests/client-sdk/ --report`


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-22 19:20:49 -08:00

93 lines
3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import random
import pytest
@pytest.fixture(scope="function")
def empty_vector_db_registry(llama_stack_client):
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
for vector_db_id in vector_dbs:
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
@pytest.fixture(scope="function")
def single_entry_vector_db_registry(llama_stack_client, empty_vector_db_registry):
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
return vector_dbs
def test_vector_db_retrieve(
llama_stack_client, embedding_model, empty_vector_db_registry
):
# Register a memory bank first
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
provider_id="faiss",
)
# Retrieve the memory bank and validate its properties
response = llama_stack_client.vector_dbs.retrieve(vector_db_id=vector_db_id)
assert response is not None
assert response.identifier == vector_db_id
assert response.embedding_model == embedding_model
assert response.provider_id == "faiss"
assert response.provider_resource_id == vector_db_id
def test_vector_db_list(llama_stack_client, empty_vector_db_registry):
vector_dbs_after_register = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(vector_dbs_after_register) == 0
def test_vector_db_register(
llama_stack_client, embedding_model, empty_vector_db_registry
):
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
provider_id="faiss",
)
vector_dbs_after_register = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert vector_dbs_after_register == [vector_db_id]
def test_vector_db_unregister(llama_stack_client, single_entry_vector_db_registry):
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(vector_dbs) == 1
vector_db_id = vector_dbs[0]
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(vector_dbs) == 0