llama-stack/llama_stack/models/llama/llama3/generation.py
raghotham 5a422e236c
chore: make cprint write to stderr (#2250)
Also do sys.exit(1) in case of errors
2025-05-24 23:39:57 -07:00

376 lines
14 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import json
import os
import sys
import time
from collections.abc import Callable, Generator
from pathlib import Path
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
initialize_model_parallel,
model_parallel_is_initialized,
)
from termcolor import cprint
from ..checkpoint import maybe_reshard_state_dict
from ..datatypes import GenerationResult, QuantizationMode, RawContent, RawMessage, ToolPromptFormat
from .args import ModelArgs
from .chat_format import ChatFormat, LLMInput
from .model import Transformer
from .multimodal.model import CrossAttentionTransformer
from .tokenizer import Tokenizer
class Llama3:
@staticmethod
def build(
ckpt_dir: str,
max_seq_len: int,
max_batch_size: int,
world_size: int | None = None,
quantization_mode: QuantizationMode | None = None,
seed: int = 1,
device: str = "cuda",
):
device = torch.device(device)
if (
device.type == "cuda"
and not torch.cuda.is_available()
or device.type == "xpu"
and not torch.xpu.is_available()
):
raise RuntimeError(f"PyTorch backend for {device.type} device type is not available")
if not torch.distributed.is_initialized():
if device.type == "cuda":
torch.distributed.init_process_group("nccl")
else:
torch.distributed.init_process_group("gloo")
if not model_parallel_is_initialized():
if world_size is None:
world_size = int(os.environ.get("WORLD_SIZE", 1))
initialize_model_parallel(world_size)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if device.type == "cuda":
torch.cuda.set_device(local_rank)
elif device.type == "xpu":
torch.xpu.set_device(local_rank)
torch.manual_seed(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
ckpt_paths = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(ckpt_paths) > 0, f"no checkpoint files found in {ckpt_dir}"
print(f"Loading a checkpoint (shards={len(ckpt_paths)}, current-mp-size={world_size})")
with open(Path(ckpt_dir) / "params.json") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params,
)
tokenizer = Tokenizer.get_instance()
state_dict = maybe_reshard_state_dict(
ckpt_paths,
n_kv_heads=model_args.n_kv_heads if model_args.n_kv_heads else model_args.n_heads,
)
assert model_args.vocab_size == tokenizer.n_words
def build_model():
if model_args.vision_chunk_size > 0:
model = CrossAttentionTransformer(model_args)
model.setup_cache(model_args.max_batch_size, device=device, dtype=torch.get_default_dtype())
else:
model = Transformer(model_args)
return model
if quantization_mode == QuantizationMode.fp8_mixed or quantization_mode == QuantizationMode.int4_mixed:
from .quantization.loader import convert_to_quantized_model
torch.set_default_tensor_type(torch.BFloat16Tensor)
model = build_model()
print("Loading state dict...")
model.load_state_dict(state_dict, strict=False)
print("Done...")
model = convert_to_quantized_model(model, ckpt_dir, quantization_mode, device=device)
torch.set_default_device(device)
else:
print(f"Setting default device to {device}")
if device.type == "cuda":
if torch.cuda.is_bf16_supported():
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
else:
torch.set_default_tensor_type(torch.cuda.Float16Tensor)
elif device.type == "xpu":
if torch.xpu.is_bf16_supported():
torch.set_default_tensor_type(torch.xpu.BFloat16Tensor)
else:
torch.set_default_tensor_type(torch.xpu.Float16Tensor)
model = build_model()
print("Loading state dict...")
model.load_state_dict(state_dict, strict=True)
model.to(device)
print("Done...")
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return Llama3(model, tokenizer, model_args)
def __init__(
self,
model: Transformer | CrossAttentionTransformer,
tokenizer: Tokenizer,
args: ModelArgs,
):
self.args = args
self.model = model
self.tokenizer = tokenizer
self.formatter = ChatFormat(tokenizer)
@torch.inference_mode()
def generate(
self,
llm_inputs: list[LLMInput],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
print_model_input: bool = False,
logits_processor: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None = None,
) -> Generator[list[GenerationResult], None, None]:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
max_gen_len = self.args.max_seq_len - 1
params = self.model.params
print_model_input = print_model_input or os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1"
if print_model_input:
for inp in llm_inputs:
tokens_to_print = [self.formatter.vision_token if t == 128256 else t for t in inp.tokens]
cprint(
"Input to model:\n" + self.tokenizer.decode(tokens_to_print) + "\n",
"red",
file=sys.stderr,
)
prompt_tokens = [inp.tokens for inp in llm_inputs]
bsz = len(llm_inputs)
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
if max_prompt_len >= params.max_seq_len:
cprint(
f"Out of token budget {max_prompt_len} vs {params.max_seq_len}",
color="red",
file=sys.stderr,
)
return
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
pad_id = self.tokenizer.pad_id
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long)
for k, t in enumerate(prompt_tokens):
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long)
if logprobs:
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
is_vision = not isinstance(self.model, Transformer)
if is_vision:
images = [inp.vision.images if inp.vision is not None else [] for inp in llm_inputs]
mask = [inp.vision.mask if inp.vision is not None else [] for inp in llm_inputs]
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks(
batch_images=images,
batch_masks=mask,
total_len=total_len,
device=tokens.device,
)
eos_reached = torch.tensor([False] * bsz)
input_text_mask = tokens != pad_id
if echo:
for i in range(max_prompt_len):
results = []
for j, t in enumerate(tokens[:, i]):
results.append(
GenerationResult(
token=t.item(),
text=self.tokenizer.decode([t.item()]),
source="input",
logprobs=(token_logprobs[j, i : i + 1].tolist() if logprobs else None),
batch_idx=j,
finished=False,
ignore_token=t.item() == pad_id,
)
)
yield results
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
prev_pos = 0
for cur_pos in range(min_prompt_len, total_len):
if is_vision:
position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long)
text_only_inference = all(inp.vision is None for inp in llm_inputs)
logits = self.model.forward(
position_ids,
tokens,
cross_attention_masks,
full_text_row_masked_out_mask,
xattn_caches,
text_only_inference,
)
else:
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if logits_processor is not None:
logits = logits_processor(tokens[:, :cur_pos], logits)
if temperature > 0:
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits[:, -1], dim=-1)
next_token = next_token.reshape(-1)
# only replace token if prompt has already been generated
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
target = tokens[:, prev_pos + 1 : cur_pos + 1]
if is_vision:
# the logits space (num_classes) is designed to never contain a media_token
# however our input token stream does contain them. we need to nuke them here
# or else the CUDA kernels will crash with an illegal memory access
vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256]
masks = [target.eq(t) for t in vision_tokens]
if len(masks) > 1:
mask = torch.logical_or(*masks)
else:
mask = masks[0]
target[mask] = 0
if logprobs:
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
input=logits.transpose(1, 2),
target=target,
reduction="none",
ignore_index=pad_id,
)
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
results = []
for idx, t in enumerate(next_token):
results.append(
GenerationResult(
token=t.item(),
text=self.tokenizer.decode([t.item()]),
source="output",
logprobs=(token_logprobs[idx, cur_pos : cur_pos + 1].tolist() if logprobs else None),
batch_idx=idx,
finished=eos_reached[idx].item(),
ignore_token=cur_pos < len(prompt_tokens[idx]),
)
)
yield results
prev_pos = cur_pos
if all(eos_reached):
break
def completion(
self,
contents: list[RawContent],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
) -> Generator[list[GenerationResult], None, None]:
model_inputs = [self.formatter.encode_content(c) for c in contents]
for result in self.generate(
model_inputs=model_inputs,
temperature=temperature,
top_p=top_p,
max_gen_len=max_gen_len,
logprobs=logprobs,
echo=echo,
):
yield result
if all(r.finished for r in result):
break
def chat_completion(
self,
messages_batch: list[list[RawMessage]],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: int | None = None,
logprobs: bool = False,
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
echo: bool = False,
) -> Generator[list[GenerationResult], None, None]:
model_inputs = [self.formatter.encode_dialog_prompt(messages) for messages in messages_batch]
for result in self.generate(
model_inputs=model_inputs,
temperature=temperature,
top_p=top_p,
max_gen_len=max_gen_len,
logprobs=logprobs,
echo=echo,
):
yield result
if all(r.finished for r in result):
break
def sample_top_p(probs, p):
"""
Perform top-p (nucleus) sampling on a probability distribution.
Args:
probs (torch.Tensor): Probability distribution tensor.
p (float): Probability threshold for top-p sampling.
Returns:
torch.Tensor: Sampled token indices.
Note:
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token