llama-stack/llama_stack/apis/scoring/scoring.py
Xi Yan 6192bf43a4
[Evals API][10/n] API updates for EvalTaskDef + new test migration (#379)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* delete old tests

* fixture return impl
2024-11-07 21:24:12 -08:00

60 lines
1.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.scoring_functions import * # noqa: F403
# mapping of metric to value
ScoringResultRow = Dict[str, Any]
@json_schema_type
class ScoringResult(BaseModel):
score_rows: List[ScoringResultRow]
# aggregated metrics to value
aggregated_results: Dict[str, Any]
@json_schema_type
class ScoreBatchResponse(BaseModel):
dataset_id: Optional[str] = None
results: Dict[str, ScoringResult]
@json_schema_type
class ScoreResponse(BaseModel):
# each key in the dict is a scoring function name
results: Dict[str, ScoringResult]
class ScoringFunctionStore(Protocol):
def get_scoring_function(self, name: str) -> ScoringFnDefWithProvider: ...
@runtime_checkable
class Scoring(Protocol):
scoring_function_store: ScoringFunctionStore
@webmethod(route="/scoring/score_batch")
async def score_batch(
self,
dataset_id: str,
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse: ...
@webmethod(route="/scoring/score")
async def score(
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
) -> ScoreResponse: ...