llama-stack/llama_stack/apis/vector_dbs/vector_dbs.py
Sébastien Han c029fbcd13
fix: return 4xx for non-existent resources in GET requests (#1635)
# What does this PR do?

- Removed Optional return types for GET methods
- Raised ValueError when requested resource is not found
- Ensures proper 4xx response for missing resources
- Updated the API generator to check for wrong signatures

```
$ uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh
Validating API method return types...

API Method Return Type Validation Errors:

Method ScoringFunctions.get_scoring_function returns Optional type
```

Closes: https://github.com/meta-llama/llama-stack/issues/1630

## Test Plan

Run the server then:

```
curl http://127.0.0.1:8321/v1/models/foo     
{"detail":"Invalid value: Model 'foo' not found"}%  
```

Server log:

```
INFO:     127.0.0.1:52307 - "GET /v1/models/foo HTTP/1.1" 400 Bad Request
09:51:42.654 [END] /v1/models/foo [StatusCode.OK] (134.65ms)
 09:51:42.651 [ERROR] Error executing endpoint route='/v1/models/{model_id:path}' method='get'
Traceback (most recent call last):
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 193, in endpoint
    return await maybe_await(value)
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 156, in maybe_await
    return await value
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper
    result = await method(self, *args, **kwargs)
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 217, in get_model
    raise ValueError(f"Model '{model_id}' not found")
ValueError: Model 'foo' not found
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-18 14:06:53 -07:00

66 lines
1.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Literal, Optional, Protocol, runtime_checkable
from pydantic import BaseModel
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class VectorDB(Resource):
type: Literal[ResourceType.vector_db.value] = ResourceType.vector_db.value
embedding_model: str
embedding_dimension: int
@property
def vector_db_id(self) -> str:
return self.identifier
@property
def provider_vector_db_id(self) -> str:
return self.provider_resource_id
class VectorDBInput(BaseModel):
vector_db_id: str
embedding_model: str
embedding_dimension: int
provider_vector_db_id: Optional[str] = None
class ListVectorDBsResponse(BaseModel):
data: List[VectorDB]
@runtime_checkable
@trace_protocol
class VectorDBs(Protocol):
@webmethod(route="/vector-dbs", method="GET")
async def list_vector_dbs(self) -> ListVectorDBsResponse: ...
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="GET")
async def get_vector_db(
self,
vector_db_id: str,
) -> VectorDB: ...
@webmethod(route="/vector-dbs", method="POST")
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: Optional[int] = 384,
provider_id: Optional[str] = None,
provider_vector_db_id: Optional[str] = None,
) -> VectorDB: ...
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="DELETE")
async def unregister_vector_db(self, vector_db_id: str) -> None: ...