forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Add support for the temperature to the responses API ## Test Plan Manually tested simple case unit tests added for simple case and tool calls Signed-off-by: Derek Higgins <derekh@redhat.com>
202 lines
6.6 KiB
Python
202 lines
6.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from unittest.mock import AsyncMock
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.agents.openai_responses import (
|
|
OpenAIResponseInputToolWebSearch,
|
|
OpenAIResponseOutputMessage,
|
|
)
|
|
from llama_stack.apis.inference.inference import (
|
|
OpenAIAssistantMessageParam,
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionToolCall,
|
|
OpenAIChatCompletionToolCallFunction,
|
|
OpenAIChoice,
|
|
OpenAIUserMessageParam,
|
|
)
|
|
from llama_stack.apis.tools.tools import Tool, ToolGroups, ToolInvocationResult, ToolParameter, ToolRuntime
|
|
from llama_stack.providers.inline.agents.meta_reference.openai_responses import (
|
|
OpenAIResponsesImpl,
|
|
)
|
|
from llama_stack.providers.utils.kvstore import KVStore
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_kvstore():
|
|
kvstore = AsyncMock(spec=KVStore)
|
|
return kvstore
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_inference_api():
|
|
inference_api = AsyncMock()
|
|
return inference_api
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_tool_groups_api():
|
|
tool_groups_api = AsyncMock(spec=ToolGroups)
|
|
return tool_groups_api
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_tool_runtime_api():
|
|
tool_runtime_api = AsyncMock(spec=ToolRuntime)
|
|
return tool_runtime_api
|
|
|
|
|
|
@pytest.fixture
|
|
def openai_responses_impl(mock_kvstore, mock_inference_api, mock_tool_groups_api, mock_tool_runtime_api):
|
|
return OpenAIResponsesImpl(
|
|
persistence_store=mock_kvstore,
|
|
inference_api=mock_inference_api,
|
|
tool_groups_api=mock_tool_groups_api,
|
|
tool_runtime_api=mock_tool_runtime_api,
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_create_openai_response_with_string_input(openai_responses_impl, mock_inference_api):
|
|
"""Test creating an OpenAI response with a simple string input."""
|
|
# Setup
|
|
input_text = "Hello, world!"
|
|
model = "meta-llama/Llama-3.1-8B-Instruct"
|
|
|
|
mock_chat_completion = OpenAIChatCompletion(
|
|
id="chat-completion-123",
|
|
choices=[
|
|
OpenAIChoice(
|
|
message=OpenAIAssistantMessageParam(content="Hello! How can I help you?"),
|
|
finish_reason="stop",
|
|
index=0,
|
|
)
|
|
],
|
|
created=1234567890,
|
|
model=model,
|
|
)
|
|
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
|
|
|
# Execute
|
|
result = await openai_responses_impl.create_openai_response(
|
|
input=input_text,
|
|
model=model,
|
|
temperature=0.1,
|
|
)
|
|
|
|
# Verify
|
|
mock_inference_api.openai_chat_completion.assert_called_once_with(
|
|
model=model,
|
|
messages=[OpenAIUserMessageParam(role="user", content="Hello, world!", name=None)],
|
|
tools=None,
|
|
stream=False,
|
|
temperature=0.1,
|
|
)
|
|
openai_responses_impl.persistence_store.set.assert_called_once()
|
|
assert result.model == model
|
|
assert len(result.output) == 1
|
|
assert isinstance(result.output[0], OpenAIResponseOutputMessage)
|
|
assert result.output[0].content[0].text == "Hello! How can I help you?"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_create_openai_response_with_string_input_with_tools(openai_responses_impl, mock_inference_api):
|
|
"""Test creating an OpenAI response with a simple string input and tools."""
|
|
# Setup
|
|
input_text = "What was the score of todays game?"
|
|
model = "meta-llama/Llama-3.1-8B-Instruct"
|
|
|
|
mock_chat_completions = [
|
|
OpenAIChatCompletion(
|
|
id="chat-completion-123",
|
|
choices=[
|
|
OpenAIChoice(
|
|
message=OpenAIAssistantMessageParam(
|
|
tool_calls=[
|
|
OpenAIChatCompletionToolCall(
|
|
id="tool_call_123",
|
|
type="function",
|
|
function=OpenAIChatCompletionToolCallFunction(
|
|
name="web_search", arguments='{"query":"What was the score of todays game?"}'
|
|
),
|
|
)
|
|
],
|
|
),
|
|
finish_reason="stop",
|
|
index=0,
|
|
)
|
|
],
|
|
created=1234567890,
|
|
model=model,
|
|
),
|
|
OpenAIChatCompletion(
|
|
id="chat-completion-123",
|
|
choices=[
|
|
OpenAIChoice(
|
|
message=OpenAIAssistantMessageParam(content="The score of todays game was 10-12"),
|
|
finish_reason="stop",
|
|
index=0,
|
|
)
|
|
],
|
|
created=1234567890,
|
|
model=model,
|
|
),
|
|
]
|
|
|
|
mock_inference_api.openai_chat_completion.side_effect = mock_chat_completions
|
|
|
|
openai_responses_impl.tool_groups_api.get_tool.return_value = Tool(
|
|
identifier="web_search",
|
|
provider_id="client",
|
|
toolgroup_id="web_search",
|
|
tool_host="client",
|
|
description="Search the web for information",
|
|
parameters=[
|
|
ToolParameter(name="query", parameter_type="string", description="The query to search for", required=True)
|
|
],
|
|
)
|
|
|
|
openai_responses_impl.tool_runtime_api.invoke_tool.return_value = ToolInvocationResult(
|
|
status="completed",
|
|
content="The score of todays game was 10-12",
|
|
)
|
|
|
|
# Execute
|
|
result = await openai_responses_impl.create_openai_response(
|
|
input=input_text,
|
|
model=model,
|
|
temperature=0.1,
|
|
tools=[
|
|
OpenAIResponseInputToolWebSearch(
|
|
name="web_search",
|
|
)
|
|
],
|
|
)
|
|
|
|
# Verify
|
|
first_call = mock_inference_api.openai_chat_completion.call_args_list[0]
|
|
assert first_call.kwargs["messages"][0].content == "What was the score of todays game?"
|
|
assert first_call.kwargs["tools"] is not None
|
|
assert first_call.kwargs["temperature"] == 0.1
|
|
|
|
second_call = mock_inference_api.openai_chat_completion.call_args_list[1]
|
|
assert second_call.kwargs["messages"][-1].content == "The score of todays game was 10-12"
|
|
assert second_call.kwargs["temperature"] == 0.1
|
|
|
|
openai_responses_impl.tool_groups_api.get_tool.assert_called_once_with("web_search")
|
|
openai_responses_impl.tool_runtime_api.invoke_tool.assert_called_once_with(
|
|
tool_name="web_search",
|
|
kwargs={"query": "What was the score of todays game?"},
|
|
)
|
|
|
|
openai_responses_impl.persistence_store.set.assert_called_once()
|
|
|
|
# Check that we got the content from our mocked tool execution result
|
|
assert len(result.output) >= 1
|
|
assert isinstance(result.output[1], OpenAIResponseOutputMessage)
|
|
assert result.output[1].content[0].text == "The score of todays game was 10-12"
|