llama-stack/docs/openapi_generator/generate.py
Xi Yan abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00

126 lines
4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described found in the
# LICENSE file in the root directory of this source tree.
from datetime import datetime
from pathlib import Path
import fire
import yaml
from llama_models import schema_utils
from .pyopenapi.options import Options
from .pyopenapi.specification import Info, Server
from .pyopenapi.utility import Specification
# We do some monkey-patching to ensure our definitions only use the minimal
# (json_schema_type, webmethod) definitions from the llama_models package. For
# generation though, we need the full definitions and implementations from the
# (json-strong-typing) package.
from .strong_typing.schema import json_schema_type
schema_utils.json_schema_type = json_schema_type
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.agents import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.scoring import * # noqa: F403
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.eval import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.batch_inference import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.apis.telemetry import * # noqa: F403
from llama_stack.apis.post_training import * # noqa: F403
from llama_stack.apis.synthetic_data_generation import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.apis.models import * # noqa: F403
from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.apis.shields import * # noqa: F403
from llama_stack.apis.inspect import * # noqa: F403
class LlamaStack(
MemoryBanks,
Inference,
BatchInference,
Agents,
Safety,
SyntheticDataGeneration,
Datasets,
Telemetry,
PostTraining,
Memory,
Eval,
Scoring,
ScoringFunctions,
DatasetIO,
Models,
Shields,
Inspect,
):
pass
# TODO: this should be fixed in the generator itself so it reads appropriate annotations
STREAMING_ENDPOINTS = [
"/agents/turn/create",
"/inference/chat_completion",
]
def patch_sse_stream_responses(spec: Specification):
for path, path_item in spec.document.paths.items():
if path in STREAMING_ENDPOINTS:
content = path_item.post.responses["200"].content.pop("application/json")
path_item.post.responses["200"].content["text/event-stream"] = content
def main(output_dir: str):
output_dir = Path(output_dir)
if not output_dir.exists():
raise ValueError(f"Directory {output_dir} does not exist")
now = str(datetime.now())
print(
"Converting the spec to YAML (openapi.yaml) and HTML (openapi.html) at " + now
)
print("")
spec = Specification(
LlamaStack,
Options(
server=Server(url="http://any-hosted-llama-stack.com"),
info=Info(
title="[DRAFT] Llama Stack Specification",
version="0.0.1",
description="""This is the specification of the llama stack that provides
a set of endpoints and their corresponding interfaces that are tailored to
best leverage Llama Models. The specification is still in draft and subject to change.
Generated at """
+ now,
),
),
)
patch_sse_stream_responses(spec)
with open(output_dir / "llama-stack-spec.yaml", "w", encoding="utf-8") as fp:
yaml.dump(spec.get_json(), fp, allow_unicode=True)
with open(output_dir / "llama-stack-spec.html", "w") as fp:
spec.write_html(fp, pretty_print=True)
if __name__ == "__main__":
fire.Fire(main)