llama-stack/llama_stack/providers/remote/inference/bedrock/bedrock.py
Xi Yan 66d7e15c93
perf: ensure ToolCall in ChatCompletionResponse is subset of ChatCompletionRequest.tools (#1041)
# What does this PR do?

**Problem**
- Using script:
https://gist.github.com/thoraxe/6163b2145ce7b1c24c6026b64cf90085

- This hits an issue on server with `code_interpreter` not found, as we
do not pass "builtin::code_interpreter" in AgentConfig's `toolgroups`.

This is a general issue where model always tries to output
`code_interpreter` in `ToolCall` even when we do not have
`code_interpreter` available for execution.

**Reproduce Deeper Problem in chat-completion**
- Use script:
https://gist.github.com/yanxi0830/163a9ad7b5db10556043fbfc7ecd7603

1. We currently always populate `code_interpreter` in `ToolCall` in
ChatCompletionResponse if the model's response begins with
`<|python_tag|>`. See
c5f5958498/models/llama3/api/chat_format.py (L200-L213)

<img width="913" alt="image"
src="https://github.com/user-attachments/assets/328d313d-0a0b-495c-8715-61cca9ccc4a6"
/>

2. This happens even if we do not pass the `code_interpreter` as a
`tools` in ChatCompletionRequest.

**This PR**

Explicitly make sure that the tools returned in
`ChatCompletionResponse.tool_calls` is always a tool requested by
`ChatCompletionRequest.tools`.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

**Before**
<img width="913" alt="image"
src="https://github.com/user-attachments/assets/328d313d-0a0b-495c-8715-61cca9ccc4a6"
/>
<img width="997" alt="image"
src="https://github.com/user-attachments/assets/d3e82b62-b142-4939-954c-62843bec7110"
/>


**After**
<img width="856" alt="image"
src="https://github.com/user-attachments/assets/2c70ce55-c8d0-45ea-b10f-f70adc50d3d9"
/>
<img width="1000" alt="image"
src="https://github.com/user-attachments/assets/b5e81826-c35b-4052-bf81-7afff93ce2ef"
/>



**Unit Test**
```
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request --inference-model "meta-llama/Llama-3.3-70B-Instruct"
```

```
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/agents/
```
<img width="1002" alt="image"
src="https://github.com/user-attachments/assets/04808517-eded-4122-97f5-7e5142de9779"
/>



**Streaming**
- Chat Completion
<img width="902" alt="image"
src="https://github.com/user-attachments/assets/f477bc86-bd38-4729-b49e-a0a6ed3f835a"
/>

- Agent
<img width="916" alt="image"
src="https://github.com/user-attachments/assets/f4cc3417-23cd-46b1-953d-3a2271e79bbb"
/>


[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
2025-02-11 18:31:35 -08:00

200 lines
7.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
from botocore.client import BaseClient
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_strategy_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
)
MODEL_ALIASES = [
build_model_alias(
"meta.llama3-1-8b-instruct-v1:0",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"meta.llama3-1-70b-instruct-v1:0",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"meta.llama3-1-405b-instruct-v1:0",
CoreModelId.llama3_1_405b_instruct.value,
),
]
class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: BedrockConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
self._config = config
self._client = create_bedrock_client(config)
self.formatter = ChatFormat(Tokenizer.get_instance())
@property
def client(self) -> BaseClient:
return self._client
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
self.client.close()
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params_for_chat_completion(request)
res = self.client.invoke_model(**params)
chunk = next(res["body"])
result = json.loads(chunk.decode("utf-8"))
choice = OpenAICompatCompletionChoice(
finish_reason=result["stop_reason"],
text=result["generation"],
)
response = OpenAICompatCompletionResponse(choices=[choice])
return process_chat_completion_response(response, self.formatter, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params_for_chat_completion(request)
res = self.client.invoke_model_with_response_stream(**params)
event_stream = res["body"]
async def _generate_and_convert_to_openai_compat():
for chunk in event_stream:
chunk = chunk["chunk"]["bytes"]
result = json.loads(chunk.decode("utf-8"))
choice = OpenAICompatCompletionChoice(
finish_reason=result["stop_reason"],
text=result["generation"],
)
yield OpenAICompatCompletionResponse(choices=[choice])
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(stream, self.formatter, request):
yield chunk
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> Dict:
bedrock_model = request.model
sampling_params = request.sampling_params
options = get_sampling_strategy_options(sampling_params)
if sampling_params.max_tokens:
options["max_gen_len"] = sampling_params.max_tokens
if sampling_params.repetition_penalty > 0:
options["repetition_penalty"] = sampling_params.repetition_penalty
prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model), self.formatter)
return {
"modelId": bedrock_model,
"body": json.dumps(
{
"prompt": prompt,
**options,
}
),
}
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
embeddings = []
for content in contents:
assert not content_has_media(content), "Bedrock does not support media for embeddings"
input_text = interleaved_content_as_str(content)
input_body = {"inputText": input_text}
body = json.dumps(input_body)
response = self.client.invoke_model(
body=body,
modelId=model.provider_resource_id,
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
embeddings.append(response_body.get("embedding"))
return EmbeddingsResponse(embeddings=embeddings)