forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This PR adds stubs to the end of functions create_agent_turn, create_openai_response and job_result. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan Ran provided unit tests [//]: # (## Documentation)
145 lines
5.1 KiB
Python
145 lines
5.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Annotated, Any, Literal, Protocol
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.apis.agents import AgentConfig
|
|
from llama_stack.apis.common.job_types import Job
|
|
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
|
from llama_stack.apis.scoring import ScoringResult
|
|
from llama_stack.apis.scoring_functions import ScoringFnParams
|
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
|
|
|
|
|
@json_schema_type
|
|
class ModelCandidate(BaseModel):
|
|
"""A model candidate for evaluation.
|
|
|
|
:param model: The model ID to evaluate.
|
|
:param sampling_params: The sampling parameters for the model.
|
|
:param system_message: (Optional) The system message providing instructions or context to the model.
|
|
"""
|
|
|
|
type: Literal["model"] = "model"
|
|
model: str
|
|
sampling_params: SamplingParams
|
|
system_message: SystemMessage | None = None
|
|
|
|
|
|
@json_schema_type
|
|
class AgentCandidate(BaseModel):
|
|
"""An agent candidate for evaluation.
|
|
|
|
:param config: The configuration for the agent candidate.
|
|
"""
|
|
|
|
type: Literal["agent"] = "agent"
|
|
config: AgentConfig
|
|
|
|
|
|
EvalCandidate = Annotated[ModelCandidate | AgentCandidate, Field(discriminator="type")]
|
|
register_schema(EvalCandidate, name="EvalCandidate")
|
|
|
|
|
|
@json_schema_type
|
|
class BenchmarkConfig(BaseModel):
|
|
"""A benchmark configuration for evaluation.
|
|
|
|
:param eval_candidate: The candidate to evaluate.
|
|
:param scoring_params: Map between scoring function id and parameters for each scoring function you want to run
|
|
:param num_examples: (Optional) The number of examples to evaluate. If not provided, all examples in the dataset will be evaluated
|
|
"""
|
|
|
|
eval_candidate: EvalCandidate
|
|
scoring_params: dict[str, ScoringFnParams] = Field(
|
|
description="Map between scoring function id and parameters for each scoring function you want to run",
|
|
default_factory=dict,
|
|
)
|
|
num_examples: int | None = Field(
|
|
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
|
|
default=None,
|
|
)
|
|
# we could optinally add any specific dataset config here
|
|
|
|
|
|
@json_schema_type
|
|
class EvaluateResponse(BaseModel):
|
|
"""The response from an evaluation.
|
|
|
|
:param generations: The generations from the evaluation.
|
|
:param scores: The scores from the evaluation.
|
|
"""
|
|
|
|
generations: list[dict[str, Any]]
|
|
# each key in the dict is a scoring function name
|
|
scores: dict[str, ScoringResult]
|
|
|
|
|
|
class Eval(Protocol):
|
|
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
|
|
async def run_eval(
|
|
self,
|
|
benchmark_id: str,
|
|
benchmark_config: BenchmarkConfig,
|
|
) -> Job:
|
|
"""Run an evaluation on a benchmark.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param benchmark_config: The configuration for the benchmark.
|
|
:return: The job that was created to run the evaluation.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST")
|
|
async def evaluate_rows(
|
|
self,
|
|
benchmark_id: str,
|
|
input_rows: list[dict[str, Any]],
|
|
scoring_functions: list[str],
|
|
benchmark_config: BenchmarkConfig,
|
|
) -> EvaluateResponse:
|
|
"""Evaluate a list of rows on a benchmark.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param input_rows: The rows to evaluate.
|
|
:param scoring_functions: The scoring functions to use for the evaluation.
|
|
:param benchmark_config: The configuration for the benchmark.
|
|
:return: EvaluateResponse object containing generations and scores
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
|
|
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
|
|
"""Get the status of a job.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param job_id: The ID of the job to get the status of.
|
|
:return: The status of the evaluationjob.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="DELETE")
|
|
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
|
"""Cancel a job.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param job_id: The ID of the job to cancel.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result", method="GET")
|
|
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
|
|
"""Get the result of a job.
|
|
|
|
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
|
:param job_id: The ID of the job to get the result of.
|
|
:return: The result of the job.
|
|
"""
|
|
...
|