Composable building blocks to build Llama Apps
Find a file
Ben Browning 6820718b71
fix: BuiltinTool JSON serialization in remote vLLM provider (#1183)
# What does this PR do?

The `tool_name` attribute of `ToolDefinition` instances can either be a
str or a BuiltinTool enum type. This fixes the remote vLLM provider to
use the value of those BuiltinTool enums when serializing to JSON
instead of attempting to serialize the actual enum to JSON.

Reference of how this is handled in some other areas, since I followed
that same pattern for the remote vLLM provider here:
- [remote nvidia
provider](https://github.com/meta-llama/llama-stack/blob/v0.1.3/llama_stack/providers/remote/inference/nvidia/openai_utils.py#L137-L140)
- [meta reference
provider](https://github.com/meta-llama/llama-stack/blob/v0.1.3/llama_stack/providers/inline/agents/meta_reference/agent_instance.py#L635-L636)

There is opportunity to potentially reconcile the remove nvidia and
remote vllm bits where they are both translating Llama Stack Inference
APIs to OpenAI client requests, but that's a can of worms I didn't want
to open for this bug fix.

This explicitly fixes this error when using the remote vLLM provider and
the agent tests:

```
TypeError: Object of type BuiltinTool is not JSON serializable
```

So, this is related to #1144 and addresses the immediate issue raised
there. With this fix,
`tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search`
now gets past the JSON serialization error when using the remote vLLM
provider and actually attempts to call the web search tool. I don't have
any API keys setup for the actual web search providers yet, so I cannot
verify everything works after that point.

## Test Plan

I ran the `test_builtin_tool_web_search` locally with the remote vLLM
provider like:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search --inference-model "meta-llama/Llama-3.2-3B-Instruct"
```

Before my change, that reproduced the `TypeError: Object of type
BuiltinTool is not JSON serializable` error. After my change, that error
is gone and the test actually attempts the web search. That failed for
me locally, due to lack of API key, but it gets past the JSON
serialization error.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-02-20 21:18:37 -08:00
.github docs: remove changelog mention from PR template (#1049) 2025-02-11 13:24:53 -05:00
distributions precommit 2025-02-19 22:35:24 -08:00
docs feat(providers): add NVIDIA Inference embedding provider and tests (#935) 2025-02-20 16:59:48 -08:00
llama_stack fix: BuiltinTool JSON serialization in remote vLLM provider (#1183) 2025-02-20 21:18:37 -08:00
rfcs docs: Fix url to the llama-stack-spec yaml/html files (#1081) 2025-02-13 12:39:26 -08:00
tests/client-sdk feat(providers): add NVIDIA Inference embedding provider and tests (#935) 2025-02-20 16:59:48 -08:00
.gitignore github: ignore non-hidden python virtual environments (#939) 2025-02-03 11:53:05 -08:00
.gitmodules impls -> inline, adapters -> remote (#381) 2024-11-06 14:54:05 -08:00
.pre-commit-config.yaml feat: register embedding models for ollama, together, fireworks (#1190) 2025-02-20 15:39:08 -08:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: Add missing uv command for docs generation in contributing guide (#1197) 2025-02-20 21:05:03 -08:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in Move to use pyproject.toml so it is uv compatible 2025-01-31 21:28:08 -08:00
pyproject.toml build: add missing dev dependencies for unit tests (#1004) 2025-02-19 22:26:11 -08:00
README.md docs: Simplify installation guide with uv (#1196) 2025-02-20 21:05:47 -08:00
requirements.txt build: add missing dev dependencies for unit tests (#1004) 2025-02-19 22:26:11 -08:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock build: add missing dev dependencies for unit tests (#1004) 2025-02-19 22:26:11 -08:00

Llama Stack

PyPI version PyPI - Downloads License Discord

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Installation

You have two ways to install this repository:

  • Install as a package: You can install the repository directly from PyPI by running the following command:

    pip install llama-stack
    
  • Install from source: If you prefer to install from the source code, we recommend using uv. Then, run the following commands:

     git clone git@github.com:meta-llama/llama-stack.git
     cd llama-stack
    
     uv sync
     uv pip install -e .
    

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.