forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
193 lines
6.9 KiB
Python
193 lines
6.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.common.content_types import URL
|
|
from llama_stack.apis.common.type_system import ChatCompletionInputType, StringType
|
|
|
|
from llama_stack.apis.eval.eval import (
|
|
AppEvalTaskConfig,
|
|
BenchmarkEvalTaskConfig,
|
|
ModelCandidate,
|
|
)
|
|
from llama_stack.apis.inference import SamplingParams
|
|
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams
|
|
from llama_stack.distribution.datatypes import Api
|
|
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
|
from .constants import JUDGE_PROMPT
|
|
|
|
# How to run this test:
|
|
#
|
|
# pytest llama_stack/providers/tests/eval/test_eval.py
|
|
# -m "meta_reference_eval_together_inference_huggingface_datasetio"
|
|
# -v -s --tb=short --disable-warnings
|
|
|
|
|
|
class Testeval:
|
|
@pytest.mark.asyncio
|
|
async def test_eval_tasks_list(self, eval_stack):
|
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
|
# but so far we don't have an unregister API unfortunately, so be careful
|
|
eval_tasks_impl = eval_stack[Api.eval_tasks]
|
|
response = await eval_tasks_impl.list_eval_tasks()
|
|
assert isinstance(response, list)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
|
|
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
|
|
eval_stack[Api.eval],
|
|
eval_stack[Api.eval_tasks],
|
|
eval_stack[Api.datasetio],
|
|
eval_stack[Api.datasets],
|
|
eval_stack[Api.models],
|
|
)
|
|
|
|
await register_dataset(
|
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
|
)
|
|
response = await datasets_impl.list_datasets()
|
|
|
|
rows = await datasetio_impl.get_rows_paginated(
|
|
dataset_id="test_dataset_for_eval",
|
|
rows_in_page=3,
|
|
)
|
|
assert len(rows.rows) == 3
|
|
|
|
scoring_functions = [
|
|
"basic::equality",
|
|
]
|
|
task_id = "meta-reference::app_eval"
|
|
await eval_tasks_impl.register_eval_task(
|
|
eval_task_id=task_id,
|
|
dataset_id="test_dataset_for_eval",
|
|
scoring_functions=scoring_functions,
|
|
)
|
|
response = await eval_impl.evaluate_rows(
|
|
task_id=task_id,
|
|
input_rows=rows.rows,
|
|
scoring_functions=scoring_functions,
|
|
task_config=AppEvalTaskConfig(
|
|
eval_candidate=ModelCandidate(
|
|
model=inference_model,
|
|
sampling_params=SamplingParams(),
|
|
),
|
|
scoring_params={
|
|
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
|
judge_model=judge_model,
|
|
prompt_template=JUDGE_PROMPT,
|
|
judge_score_regexes=[
|
|
r"Total rating: (\d+)",
|
|
r"rating: (\d+)",
|
|
r"Rating: (\d+)",
|
|
],
|
|
)
|
|
},
|
|
),
|
|
)
|
|
assert len(response.generations) == 3
|
|
assert "basic::equality" in response.scores
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
|
|
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
|
eval_stack[Api.eval],
|
|
eval_stack[Api.eval_tasks],
|
|
eval_stack[Api.datasets],
|
|
eval_stack[Api.models],
|
|
)
|
|
|
|
await register_dataset(
|
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
|
)
|
|
|
|
scoring_functions = [
|
|
"basic::subset_of",
|
|
]
|
|
|
|
task_id = "meta-reference::app_eval-2"
|
|
await eval_tasks_impl.register_eval_task(
|
|
eval_task_id=task_id,
|
|
dataset_id="test_dataset_for_eval",
|
|
scoring_functions=scoring_functions,
|
|
)
|
|
response = await eval_impl.run_eval(
|
|
task_id=task_id,
|
|
task_config=AppEvalTaskConfig(
|
|
eval_candidate=ModelCandidate(
|
|
model=inference_model,
|
|
sampling_params=SamplingParams(),
|
|
),
|
|
),
|
|
)
|
|
assert response.job_id == "0"
|
|
job_status = await eval_impl.job_status(task_id, response.job_id)
|
|
assert job_status and job_status.value == "completed"
|
|
eval_response = await eval_impl.job_result(task_id, response.job_id)
|
|
|
|
assert eval_response is not None
|
|
assert len(eval_response.generations) == 5
|
|
assert "basic::subset_of" in eval_response.scores
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
|
|
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
|
eval_stack[Api.eval],
|
|
eval_stack[Api.eval_tasks],
|
|
eval_stack[Api.datasets],
|
|
eval_stack[Api.models],
|
|
)
|
|
|
|
response = await datasets_impl.list_datasets()
|
|
assert len(response) > 0
|
|
if response[0].provider_id != "huggingface":
|
|
pytest.skip(
|
|
"Only huggingface provider supports pre-registered remote datasets"
|
|
)
|
|
|
|
await datasets_impl.register_dataset(
|
|
dataset_id="mmlu",
|
|
dataset_schema={
|
|
"input_query": StringType(),
|
|
"expected_answer": StringType(),
|
|
"chat_completion_input": ChatCompletionInputType(),
|
|
},
|
|
url=URL(uri="https://huggingface.co/datasets/llamastack/evals"),
|
|
metadata={
|
|
"path": "llamastack/evals",
|
|
"name": "evals__mmlu__details",
|
|
"split": "train",
|
|
},
|
|
)
|
|
|
|
# register eval task
|
|
await eval_tasks_impl.register_eval_task(
|
|
eval_task_id="meta-reference-mmlu",
|
|
dataset_id="mmlu",
|
|
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
|
)
|
|
|
|
# list benchmarks
|
|
response = await eval_tasks_impl.list_eval_tasks()
|
|
assert len(response) > 0
|
|
|
|
benchmark_id = "meta-reference-mmlu"
|
|
response = await eval_impl.run_eval(
|
|
task_id=benchmark_id,
|
|
task_config=BenchmarkEvalTaskConfig(
|
|
eval_candidate=ModelCandidate(
|
|
model=inference_model,
|
|
sampling_params=SamplingParams(),
|
|
),
|
|
num_examples=3,
|
|
),
|
|
)
|
|
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
|
|
assert job_status and job_status.value == "completed"
|
|
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
|
|
assert eval_response is not None
|
|
assert len(eval_response.generations) == 3
|