forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - add /eval, /scoring, /datasetio API providers to distribution templates - regenerate build.yaml / run.yaml files - fix `template.py` to take in list of providers instead of only first one - override memory provider as faiss default for all distro (as only 1 memory provider is needed to start basic flow, chromadb/pgvector need additional setup step). ``` python llama_stack/scripts/distro_codegen.py ``` - updated README to start UI via conda builds. ## Test Plan ``` python llama_stack/scripts/distro_codegen.py ``` - Use newly generated `run.yaml` to start server ``` llama stack run ./llama_stack/templates/together/run.yaml ``` <img width="1191" alt="image" src="https://github.com/user-attachments/assets/62f7d179-0cd0-427c-b6e8-e087d4648f09"> #### Registration ``` ❯ llama-stack-client datasets register \ --dataset-id "mmlu" \ --provider-id "huggingface" \ --url "https://huggingface.co/datasets/llamastack/evals" \ --metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \ --schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}' ❯ llama-stack-client datasets list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ metadata ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩ │ mmlu │ huggingface │ {'path': 'llamastack/evals', 'name': │ dataset │ │ │ │ 'evals__mmlu__details', 'split': │ │ │ │ │ 'train'} │ │ └────────────┴─────────────┴─────────────────────────────────────────┴─────────┘ ``` ``` ❯ llama-stack-client datasets register \ --dataset-id "simpleqa" \ --provider-id "huggingface" \ --url "https://huggingface.co/datasets/llamastack/evals" \ --metadata '{"path": "llamastack/evals", "name": "evals__simpleqa", "split": "train"}' \ --schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}' ❯ llama-stack-client datasets list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ metadata ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩ │ mmlu │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__mmlu__details', │ dataset │ │ │ │ 'split': 'train'} │ │ │ simpleqa │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__simpleqa', │ dataset │ │ │ │ 'split': 'train'} │ │ └────────────┴─────────────┴───────────────────────────────────────────────────────────────┴─────────┘ ``` ``` ❯ llama-stack-client eval_tasks register \ > --eval-task-id meta-reference-mmlu \ > --provider-id meta-reference \ > --dataset-id mmlu \ > --scoring-functions basic::regex_parser_multiple_choice_answer ❯ llama-stack-client eval_tasks register \ --eval-task-id meta-reference-simpleqa \ --provider-id meta-reference \ --dataset-id simpleqa \ --scoring-functions llm-as-judge::405b-simpleqa ❯ llama-stack-client eval_tasks list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┓ ┃ dataset_id ┃ identifier ┃ metadata ┃ provider_id ┃ provider_resour… ┃ scoring_functio… ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━┩ │ mmlu │ meta-reference-… │ {} │ meta-reference │ meta-reference-… │ ['basic::regex_… │ eval_task │ │ simpleqa │ meta-reference-… │ {} │ meta-reference │ meta-reference-… │ ['llm-as-judge:… │ eval_task │ └────────────┴──────────────────┴──────────┴────────────────┴──────────────────┴──────────────────┴───────────┘ ``` #### Test with UI ``` streamlit run app.py ``` ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
101 lines
3.7 KiB
Python
101 lines
3.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
|
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
|
|
from llama_stack.providers.remote.inference.tgi import InferenceAPIImplConfig
|
|
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
|
|
|
|
|
def get_distribution_template() -> DistributionTemplate:
|
|
providers = {
|
|
"inference": ["remote::hf::serverless"],
|
|
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
|
"safety": ["inline::llama-guard"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
"eval": ["inline::meta-reference"],
|
|
"datasetio": ["remote::huggingface", "inline::localfs"],
|
|
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
|
}
|
|
|
|
name = "hf-serverless"
|
|
inference_provider = Provider(
|
|
provider_id="hf-serverless",
|
|
provider_type="remote::hf::serverless",
|
|
config=InferenceAPIImplConfig.sample_run_config(),
|
|
)
|
|
memory_provider = Provider(
|
|
provider_id="faiss",
|
|
provider_type="inline::faiss",
|
|
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
|
|
)
|
|
|
|
inference_model = ModelInput(
|
|
model_id="${env.INFERENCE_MODEL}",
|
|
provider_id="hf-serverless",
|
|
)
|
|
safety_model = ModelInput(
|
|
model_id="${env.SAFETY_MODEL}",
|
|
provider_id="hf-serverless-safety",
|
|
)
|
|
|
|
return DistributionTemplate(
|
|
name=name,
|
|
distro_type="self_hosted",
|
|
description="Use (an external) Hugging Face Inference Endpoint for running LLM inference",
|
|
docker_image=None,
|
|
template_path=None,
|
|
providers=providers,
|
|
default_models=[inference_model, safety_model],
|
|
run_configs={
|
|
"run.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [inference_provider],
|
|
"memory": [memory_provider],
|
|
},
|
|
default_models=[inference_model],
|
|
),
|
|
"run-with-safety.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [
|
|
inference_provider,
|
|
Provider(
|
|
provider_id="hf-serverless-safety",
|
|
provider_type="remote::hf::serverless",
|
|
config=InferenceAPIImplConfig.sample_run_config(
|
|
repo="${env.SAFETY_MODEL}",
|
|
),
|
|
),
|
|
],
|
|
"memory": [memory_provider],
|
|
},
|
|
default_models=[
|
|
inference_model,
|
|
safety_model,
|
|
],
|
|
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
|
),
|
|
},
|
|
run_config_env_vars={
|
|
"LLAMASTACK_PORT": (
|
|
"5001",
|
|
"Port for the Llama Stack distribution server",
|
|
),
|
|
"HF_API_TOKEN": (
|
|
"hf_...",
|
|
"Hugging Face API token",
|
|
),
|
|
"INFERENCE_MODEL": (
|
|
"meta-llama/Llama-3.2-3B-Instruct",
|
|
"Inference model to be served by the HF Serverless endpoint",
|
|
),
|
|
"SAFETY_MODEL": (
|
|
"meta-llama/Llama-Guard-3-1B",
|
|
"Safety model to be served by the HF Serverless endpoint",
|
|
),
|
|
},
|
|
)
|