Composable building blocks to build Llama Apps
Find a file
Francisco Arceo 74a2584cdb
chore: Updating Milvus Client calls to be non-blocking (#1830)
# What does this PR do?
This PR converts blocking Milvus Client calls to non-blocking.

Another one for https://github.com/meta-llama/llama-stack/issues/1489

## Test Plan

I ran the integration tests from
https://github.com/meta-llama/llama-stack/pull/1467 with:
```python
pytest -s -v tests/integration/vector_io/test_vector_io.py \
  --stack-config inference=sentence-transformers,vector_io=inline::milvus \
  --embedding-model all-miniLM-L6-V2  --env MILVUS_DB_PATH=/tmp/moo.db

INFO     2025-03-28 21:35:22,726 tests.integration.conftest:41 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS          
/Users/farceo/dev/llama-stack/.venv/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================================================================================================================================================================================================== test session starts ===============================================================================================================================================================================================================================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/farceo/dev/llama-stack/.venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-15.3.1-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'cov': '6.0.0', 'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'nbval': '0.11.0'}}
rootdir: /Users/farceo/dev/llama-stack
configfile: pyproject.toml
plugins: cov-6.0.0, html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, nbval-0.11.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 7 items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

tests/integration/vector_io/test_vector_io.py::test_vector_db_retrieve[emb=all-miniLM-L6-V2] PASSED
tests/integration/vector_io/test_vector_io.py::test_vector_db_register[emb=all-miniLM-L6-V2] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case0] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case1] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case2] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case3] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case4] PASSED

========================================================================================================================================================================================================================================================= 7 passed, 2 warnings in 40.33s ==========================================================================================================================================================================================================================================================
```

[//]: # (## Documentation)

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-28 22:14:07 -04:00
.github ci: add myself to CODEOWNERS (#1823) 2025-03-28 09:37:42 -07:00
docs docs: Document sqlite-vec faiss comparison (#1821) 2025-03-28 17:41:33 +01:00
llama_stack chore: Updating Milvus Client calls to be non-blocking (#1830) 2025-03-28 22:14:07 -04:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts chore: remove distributions dir (#1809) 2025-03-27 09:03:39 -04:00
tests fix: skip code interp (#1827) 2025-03-28 12:58:08 -07:00
.gitignore build: remove .python-version (#1513) 2025-03-12 20:08:24 -07:00
.pre-commit-config.yaml fix: only invoke openapi generator if APIs or API generator changes (#1744) 2025-03-21 10:25:18 -04:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Add changelog for v0.1.7 and v0.1.8 (#1780) 2025-03-25 14:40:55 -04:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: Add more env vars in dotenv instructions (#1791) 2025-03-25 20:03:21 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in chore: remove distributions dir (#1809) 2025-03-27 09:03:39 -04:00
pyproject.toml build: Bump version to 0.1.9 2025-03-29 00:22:35 +00:00
README.md docs: remove redundant installation instructions (#1138) 2025-03-18 14:52:21 -07:00
requirements.txt build: Bump version to 0.1.19 2025-03-29 00:18:38 +00:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock build: Bump version to 0.1.9 2025-03-29 00:22:35 +00:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.