llama-stack/llama_stack/providers/remote/inference/fireworks/fireworks.py
Ashwin Bharambe 754feba61f
feat: add a configurable category-based logger (#1352)
A self-respecting server needs good observability which starts with
configurable logging. Llama Stack had little until now. This PR adds a
`logcat` facility towards that. Callsites look like:

```python
logcat.debug("inference", f"params to ollama: {params}")
```

- the first parameter is a category. there is a static list of
categories in `llama_stack/logcat.py`
- each category can be associated with a log-level which can be
configured via the `LLAMA_STACK_LOGGING` env var.
- a value `LLAMA_STACK_LOGGING=inference=debug;server=info"` does the
obvious thing. there is a special key called `all` which is an alias for
all categories

## Test Plan

Ran with `LLAMA_STACK_LOGGING="all=debug" llama stack run fireworks` and
saw the following:


![image](https://github.com/user-attachments/assets/d24b95ab-3941-426c-9ea0-a4c62542e6f0)

Hit it with a client-sdk test case and saw this:


![image](https://github.com/user-attachments/assets/3fee8c6c-986e-4125-a09c-f5dc019682e2)
2025-03-02 18:51:14 -08:00

262 lines
9.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional, Union
from fireworks.client import Fireworks
from llama_stack import logcat
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
ResponseFormat,
ResponseFormatType,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
from .config import FireworksImplConfig
from .models import MODEL_ENTRIES
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
def __init__(self, config: FireworksImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
def _get_api_key(self) -> str:
if self.config.api_key is not None:
return self.config.api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.fireworks_api_key:
raise ValueError(
'Pass Fireworks API Key in the header X-LlamaStack-Provider-Data as { "fireworks_api_key": <your api key>}'
)
return provider_data.fireworks_api_key
def _get_client(self) -> Fireworks:
fireworks_api_key = self._get_api_key()
return Fireworks(api_key=fireworks_api_key)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
params = await self._get_params(request)
r = await self._get_client().completion.acreate(**params)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
# Wrapper for async generator similar
async def _to_async_generator():
stream = self._get_client().completion.create(**params)
for chunk in stream:
yield chunk
stream = _to_async_generator()
async for chunk in process_completion_stream_response(stream):
yield chunk
def _build_options(
self,
sampling_params: Optional[SamplingParams],
fmt: ResponseFormat,
logprobs: Optional[LogProbConfig],
) -> dict:
options = get_sampling_options(sampling_params)
options.setdefault("max_tokens", 512)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
options["response_format"] = {
"type": "grammar",
"grammar": fmt.bnf,
}
else:
raise ValueError(f"Unknown response format {fmt.type}")
if logprobs and logprobs.top_k:
options["logprobs"] = logprobs.top_k
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
raise ValueError("Required range: 0 < top_k < 5")
return options
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
if "messages" in params:
r = await self._get_client().chat.completions.acreate(**params)
else:
r = await self._get_client().completion.acreate(**params)
return process_chat_completion_response(r, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _to_async_generator():
if "messages" in params:
stream = self._get_client().chat.completions.acreate(**params)
else:
stream = self._get_client().completion.acreate(**params)
async for chunk in stream:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
input_dict = {}
media_present = request_has_media(request)
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
if media_present or not llama_model:
input_dict["messages"] = [
await convert_message_to_openai_dict(m, download=True) for m in request.messages
]
else:
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
else:
assert not media_present, "Fireworks does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
# Fireworks always prepends with BOS
if "prompt" in input_dict:
if input_dict["prompt"].startswith("<|begin_of_text|>"):
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
params = {
"model": request.model,
**input_dict,
"stream": request.stream,
**self._build_options(request.sampling_params, request.response_format, request.logprobs),
}
logcat.debug("inference", f"params to fireworks: {params}")
return params
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
kwargs = {}
if model.metadata.get("embedding_dimension"):
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
assert all(not content_has_media(content) for content in contents), (
"Fireworks does not support media for embeddings"
)
response = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)