forked from phoenix-oss/llama-stack-mirror
# What does this PR do? TLDR: Changes needed to get 100% passing tests for OpenAI API verification tests when run against Llama Stack with the `together`, `fireworks`, and `openai` providers. And `groq` is better than before, at 88% passing. This cleans up the OpenAI API support for image message types (specifically `image_url` types) and handling of the `response_format` chat completion parameter. Both of these required a few more Pydantic model definitions in our Inference API, just to move from the not-quite-right stubs I had in place to something fleshed out to match the actual OpenAI API specs. As part of testing this, I also found and fixed a bug in the litellm implementation of openai_completion and openai_chat_completion, so the providers based on those should actually be working now. The method `prepare_openai_completion_params` in `llama_stack/providers/utils/inference/openai_compat.py` was improved to actually recursively clean up input parameters, including handling of lists, dicts, and dumping of Pydantic models to dicts. These changes were required to get to 100% passing tests on the OpenAI API verification against the `openai` provider. With the above, the together.ai provider was passing as well as it is without Llama Stack. But, since we have Llama Stack in the middle, I took the opportunity to clean up the together.ai provider so that it now also passes the OpenAI API spec tests we have at 100%. That means together.ai is now passing our verification test better when using an OpenAI client talking to Llama Stack than it is when hitting together.ai directly, without Llama Stack in the middle. And, another round of work for Fireworks to improve translation of incoming OpenAI chat completion requests to Llama Stack chat completion requests gets the fireworks provider passing at 100%. The server-side fireworks.ai tool calling support with OpenAI chat completions and Llama 4 models isn't great yet, but by pointing the OpenAI clients at Llama Stack's API we can clean things up and get everything working as expected for Llama 4 models. ## Test Plan ### OpenAI API Verification Tests I ran the OpenAI API verification tests as below and 100% of the tests passed. First, start a Llama Stack server that runs the `openai` provider with the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template setup to do this out of the box, so I added a `tests/verifications/openai-api-verification-run.yaml` to do this. First, ensure you have the necessary API key environment variables set: ``` export TOGETHER_API_KEY="..." export FIREWORKS_API_KEY="..." export OPENAI_API_KEY="..." ``` Then, run a Llama Stack server that serves up all these providers: ``` llama stack run \ --image-type venv \ tests/verifications/openai-api-verification-run.yaml ``` Finally, generate a new verification report against all these providers, both with and without the Llama Stack server in the middle. ``` python tests/verifications/generate_report.py \ --run-tests \ --provider \ together \ fireworks \ groq \ openai \ together-llama-stack \ fireworks-llama-stack \ groq-llama-stack \ openai-llama-stack ``` You'll see that most of the configurations with Llama Stack in the middle now pass at 100%, even though some of them do not pass at 100% when hitting the backend provider's API directly with an OpenAI client. ### OpenAI Completion Integration Tests with vLLM: I also ran the smaller `test_openai_completion.py` test suite (that's not yet merged with the verification tests) on multiple of the providers, since I had to adjust the method signature of openai_chat_completion a bit and thus had to touch lots of these providers to match. Here's the tests I ran there, all passing: ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` ### OpenAI Completion Integration Tests with ollama ``` INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0" ``` ### OpenAI Completion Integration Tests with together.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo" ``` ### OpenAI Completion Integration Tests with fireworks.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct" --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
381 lines
14 KiB
Python
381 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
import warnings
|
|
from functools import lru_cache
|
|
from typing import Any, AsyncIterator, Dict, List, Optional, Union
|
|
|
|
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
TextContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
)
|
|
from llama_stack.apis.inference.inference import (
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAICompletion,
|
|
OpenAIMessageParam,
|
|
OpenAIResponseFormatParam,
|
|
)
|
|
from llama_stack.models.llama.datatypes import ToolPromptFormat
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_openai_chat_completion_choice,
|
|
convert_openai_chat_completion_stream,
|
|
prepare_openai_completion_params,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
|
|
|
|
from . import NVIDIAConfig
|
|
from .models import MODEL_ENTRIES
|
|
from .openai_utils import (
|
|
convert_chat_completion_request,
|
|
convert_completion_request,
|
|
convert_openai_completion_choice,
|
|
convert_openai_completion_stream,
|
|
)
|
|
from .utils import _is_nvidia_hosted
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|
def __init__(self, config: NVIDIAConfig) -> None:
|
|
# TODO(mf): filter by available models
|
|
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
|
|
|
logger.info(f"Initializing NVIDIAInferenceAdapter({config.url})...")
|
|
|
|
if _is_nvidia_hosted(config):
|
|
if not config.api_key:
|
|
raise RuntimeError(
|
|
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
|
|
)
|
|
# elif self._config.api_key:
|
|
#
|
|
# we don't raise this warning because a user may have deployed their
|
|
# self-hosted NIM with an API key requirement.
|
|
#
|
|
# warnings.warn(
|
|
# "API key is not required for self-hosted NVIDIA NIM. "
|
|
# "Consider removing the api_key from the configuration."
|
|
# )
|
|
|
|
self._config = config
|
|
|
|
@lru_cache # noqa: B019
|
|
def _get_client(self, provider_model_id: str) -> AsyncOpenAI:
|
|
"""
|
|
For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However,
|
|
some models are hosted on different URLs. This function returns the appropriate client
|
|
for the given provider_model_id.
|
|
|
|
This relies on lru_cache and self._default_client to avoid creating a new client for each request
|
|
or for each model that is hosted on https://integrate.api.nvidia.com/v1.
|
|
|
|
:param provider_model_id: The provider model ID
|
|
:return: An OpenAI client
|
|
"""
|
|
|
|
@lru_cache # noqa: B019
|
|
def _get_client_for_base_url(base_url: str) -> AsyncOpenAI:
|
|
"""
|
|
Maintain a single OpenAI client per base_url.
|
|
"""
|
|
return AsyncOpenAI(
|
|
base_url=base_url,
|
|
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
|
timeout=self._config.timeout,
|
|
)
|
|
|
|
special_model_urls = {
|
|
"meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct",
|
|
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
|
|
}
|
|
|
|
base_url = f"{self._config.url}/v1"
|
|
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
|
|
base_url = special_model_urls[provider_model_id]
|
|
|
|
return _get_client_for_base_url(base_url)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
if content_has_media(content):
|
|
raise NotImplementedError("Media is not supported")
|
|
|
|
# ToDo: check health of NeMo endpoints and enable this
|
|
# removing this health check as NeMo customizer endpoint health check is returning 404
|
|
# await check_health(self._config) # this raises errors
|
|
|
|
provider_model_id = self.get_provider_model_id(model_id)
|
|
request = convert_completion_request(
|
|
request=CompletionRequest(
|
|
model=provider_model_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
),
|
|
n=1,
|
|
)
|
|
|
|
try:
|
|
response = await self._get_client(provider_model_id).completions.create(**request)
|
|
except APIConnectionError as e:
|
|
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
|
|
|
if stream:
|
|
return convert_openai_completion_stream(response)
|
|
else:
|
|
# we pass n=1 to get only one completion
|
|
return convert_openai_completion_choice(response.choices[0])
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
if any(content_has_media(content) for content in contents):
|
|
raise NotImplementedError("Media is not supported")
|
|
|
|
#
|
|
# Llama Stack: contents = List[str] | List[InterleavedContentItem]
|
|
# ->
|
|
# OpenAI: input = str | List[str]
|
|
#
|
|
# we can ignore str and always pass List[str] to OpenAI
|
|
#
|
|
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
|
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
|
model = self.get_provider_model_id(model_id)
|
|
|
|
extra_body = {}
|
|
|
|
if text_truncation is not None:
|
|
text_truncation_options = {
|
|
TextTruncation.none: "NONE",
|
|
TextTruncation.end: "END",
|
|
TextTruncation.start: "START",
|
|
}
|
|
extra_body["truncate"] = text_truncation_options[text_truncation]
|
|
|
|
if output_dimension is not None:
|
|
extra_body["dimensions"] = output_dimension
|
|
|
|
if task_type is not None:
|
|
task_type_options = {
|
|
EmbeddingTaskType.document: "passage",
|
|
EmbeddingTaskType.query: "query",
|
|
}
|
|
extra_body["input_type"] = task_type_options[task_type]
|
|
|
|
try:
|
|
response = await self._get_client(model).embeddings.create(
|
|
model=model,
|
|
input=input,
|
|
extra_body=extra_body,
|
|
)
|
|
except BadRequestError as e:
|
|
raise ValueError(f"Failed to get embeddings: {e}") from e
|
|
|
|
#
|
|
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)
|
|
# ->
|
|
# Llama Stack: EmbeddingsResponse(embeddings=List[List[float]])
|
|
#
|
|
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
if tool_prompt_format:
|
|
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring", stacklevel=2)
|
|
|
|
# await check_health(self._config) # this raises errors
|
|
|
|
provider_model_id = self.get_provider_model_id(model_id)
|
|
request = await convert_chat_completion_request(
|
|
request=ChatCompletionRequest(
|
|
model=self.get_provider_model_id(model_id),
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
tools=tools,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
),
|
|
n=1,
|
|
)
|
|
|
|
try:
|
|
response = await self._get_client(provider_model_id).chat.completions.create(**request)
|
|
except APIConnectionError as e:
|
|
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
|
|
|
if stream:
|
|
return convert_openai_chat_completion_stream(response, enable_incremental_tool_calls=False)
|
|
else:
|
|
# we pass n=1 to get only one completion
|
|
return convert_openai_chat_completion_choice(response.choices[0])
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: Union[str, List[str], List[int], List[List[int]]],
|
|
best_of: Optional[int] = None,
|
|
echo: Optional[bool] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
guided_choice: Optional[List[str]] = None,
|
|
prompt_logprobs: Optional[int] = None,
|
|
) -> OpenAICompletion:
|
|
provider_model_id = self.get_provider_model_id(model)
|
|
|
|
params = await prepare_openai_completion_params(
|
|
model=provider_model_id,
|
|
prompt=prompt,
|
|
best_of=best_of,
|
|
echo=echo,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
presence_penalty=presence_penalty,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
|
|
try:
|
|
return await self._get_client(provider_model_id).completions.create(**params)
|
|
except APIConnectionError as e:
|
|
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[OpenAIMessageParam],
|
|
frequency_penalty: Optional[float] = None,
|
|
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
|
functions: Optional[List[Dict[str, Any]]] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_completion_tokens: Optional[int] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
parallel_tool_calls: Optional[bool] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
response_format: Optional[OpenAIResponseFormatParam] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
|
tools: Optional[List[Dict[str, Any]]] = None,
|
|
top_logprobs: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
|
provider_model_id = self.get_provider_model_id(model)
|
|
|
|
params = await prepare_openai_completion_params(
|
|
model=provider_model_id,
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
|
|
try:
|
|
return await self._get_client(provider_model_id).chat.completions.create(**params)
|
|
except APIConnectionError as e:
|
|
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|