forked from phoenix-oss/llama-stack-mirror
# What does this PR do? TLDR: Changes needed to get 100% passing tests for OpenAI API verification tests when run against Llama Stack with the `together`, `fireworks`, and `openai` providers. And `groq` is better than before, at 88% passing. This cleans up the OpenAI API support for image message types (specifically `image_url` types) and handling of the `response_format` chat completion parameter. Both of these required a few more Pydantic model definitions in our Inference API, just to move from the not-quite-right stubs I had in place to something fleshed out to match the actual OpenAI API specs. As part of testing this, I also found and fixed a bug in the litellm implementation of openai_completion and openai_chat_completion, so the providers based on those should actually be working now. The method `prepare_openai_completion_params` in `llama_stack/providers/utils/inference/openai_compat.py` was improved to actually recursively clean up input parameters, including handling of lists, dicts, and dumping of Pydantic models to dicts. These changes were required to get to 100% passing tests on the OpenAI API verification against the `openai` provider. With the above, the together.ai provider was passing as well as it is without Llama Stack. But, since we have Llama Stack in the middle, I took the opportunity to clean up the together.ai provider so that it now also passes the OpenAI API spec tests we have at 100%. That means together.ai is now passing our verification test better when using an OpenAI client talking to Llama Stack than it is when hitting together.ai directly, without Llama Stack in the middle. And, another round of work for Fireworks to improve translation of incoming OpenAI chat completion requests to Llama Stack chat completion requests gets the fireworks provider passing at 100%. The server-side fireworks.ai tool calling support with OpenAI chat completions and Llama 4 models isn't great yet, but by pointing the OpenAI clients at Llama Stack's API we can clean things up and get everything working as expected for Llama 4 models. ## Test Plan ### OpenAI API Verification Tests I ran the OpenAI API verification tests as below and 100% of the tests passed. First, start a Llama Stack server that runs the `openai` provider with the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template setup to do this out of the box, so I added a `tests/verifications/openai-api-verification-run.yaml` to do this. First, ensure you have the necessary API key environment variables set: ``` export TOGETHER_API_KEY="..." export FIREWORKS_API_KEY="..." export OPENAI_API_KEY="..." ``` Then, run a Llama Stack server that serves up all these providers: ``` llama stack run \ --image-type venv \ tests/verifications/openai-api-verification-run.yaml ``` Finally, generate a new verification report against all these providers, both with and without the Llama Stack server in the middle. ``` python tests/verifications/generate_report.py \ --run-tests \ --provider \ together \ fireworks \ groq \ openai \ together-llama-stack \ fireworks-llama-stack \ groq-llama-stack \ openai-llama-stack ``` You'll see that most of the configurations with Llama Stack in the middle now pass at 100%, even though some of them do not pass at 100% when hitting the backend provider's API directly with an OpenAI client. ### OpenAI Completion Integration Tests with vLLM: I also ran the smaller `test_openai_completion.py` test suite (that's not yet merged with the verification tests) on multiple of the providers, since I had to adjust the method signature of openai_chat_completion a bit and thus had to touch lots of these providers to match. Here's the tests I ran there, all passing: ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` ### OpenAI Completion Integration Tests with ollama ``` INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0" ``` ### OpenAI Completion Integration Tests with together.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo" ``` ### OpenAI Completion Integration Tests with fireworks.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct" --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
502 lines
19 KiB
Python
502 lines
19 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
|
|
|
import httpx
|
|
from ollama import AsyncClient
|
|
from openai import AsyncOpenAI
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
ImageContentItem,
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
TextContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
GrammarResponseFormat,
|
|
Inference,
|
|
JsonSchemaResponseFormat,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import (
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAICompletion,
|
|
OpenAIMessageParam,
|
|
OpenAIResponseFormatParam,
|
|
)
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.datatypes import (
|
|
HealthResponse,
|
|
HealthStatus,
|
|
ModelsProtocolPrivate,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
content_has_media,
|
|
convert_image_content_to_url,
|
|
interleaved_content_as_str,
|
|
request_has_media,
|
|
)
|
|
|
|
from .models import model_entries
|
|
|
|
logger = get_logger(name=__name__, category="inference")
|
|
|
|
|
|
class OllamaInferenceAdapter(
|
|
Inference,
|
|
ModelsProtocolPrivate,
|
|
):
|
|
def __init__(self, url: str) -> None:
|
|
self.register_helper = ModelRegistryHelper(model_entries)
|
|
self.url = url
|
|
|
|
@property
|
|
def client(self) -> AsyncClient:
|
|
return AsyncClient(host=self.url)
|
|
|
|
@property
|
|
def openai_client(self) -> AsyncOpenAI:
|
|
return AsyncOpenAI(base_url=f"{self.url}/v1", api_key="ollama")
|
|
|
|
async def initialize(self) -> None:
|
|
logger.info(f"checking connectivity to Ollama at `{self.url}`...")
|
|
await self.health()
|
|
|
|
async def health(self) -> HealthResponse:
|
|
"""
|
|
Performs a health check by verifying connectivity to the Ollama server.
|
|
This method is used by initialize() and the Provider API to verify that the service is running
|
|
correctly.
|
|
Returns:
|
|
HealthResponse: A dictionary containing the health status.
|
|
"""
|
|
try:
|
|
await self.client.ps()
|
|
return HealthResponse(status=HealthStatus.OK)
|
|
except httpx.ConnectError as e:
|
|
raise RuntimeError(
|
|
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
|
|
) from e
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def _get_model(self, model_id: str) -> Model:
|
|
if not self.model_store:
|
|
raise ValueError("Model store not set")
|
|
return await self.model_store.get_model(model_id)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self._get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _stream_completion(
|
|
self, request: CompletionRequest
|
|
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
|
|
params = await self._get_params(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
s = await self.client.generate(**params)
|
|
async for chunk in s:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
|
text=chunk["response"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_completion_stream_response(stream):
|
|
yield chunk
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = await self.client.generate(**params)
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r["done_reason"] if r["done"] else None,
|
|
text=r["response"],
|
|
)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
return process_completion_response(response)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self._get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
response_format=response_format,
|
|
tool_config=tool_config,
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
|
sampling_options = get_sampling_options(request.sampling_params)
|
|
# This is needed since the Ollama API expects num_predict to be set
|
|
# for early truncation instead of max_tokens.
|
|
if sampling_options.get("max_tokens") is not None:
|
|
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
|
|
|
input_dict: dict[str, Any] = {}
|
|
media_present = request_has_media(request)
|
|
llama_model = self.register_helper.get_llama_model(request.model)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present or not llama_model:
|
|
contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages]
|
|
# flatten the list of lists
|
|
input_dict["messages"] = [item for sublist in contents for item in sublist]
|
|
else:
|
|
input_dict["raw"] = True
|
|
input_dict["prompt"] = await chat_completion_request_to_prompt(
|
|
request,
|
|
llama_model,
|
|
)
|
|
else:
|
|
assert not media_present, "Ollama does not support media for Completion requests"
|
|
input_dict["prompt"] = await completion_request_to_prompt(request)
|
|
input_dict["raw"] = True
|
|
|
|
if fmt := request.response_format:
|
|
if isinstance(fmt, JsonSchemaResponseFormat):
|
|
input_dict["format"] = fmt.json_schema
|
|
elif isinstance(fmt, GrammarResponseFormat):
|
|
raise NotImplementedError("Grammar response format is not supported")
|
|
else:
|
|
raise ValueError(f"Unknown response format type: {fmt.type}")
|
|
|
|
params = {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"options": sampling_options,
|
|
"stream": request.stream,
|
|
}
|
|
logger.debug(f"params to ollama: {params}")
|
|
|
|
return params
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = await self.client.chat(**params)
|
|
else:
|
|
r = await self.client.generate(**params)
|
|
|
|
if "message" in r:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r["done_reason"] if r["done"] else None,
|
|
text=r["message"]["content"],
|
|
)
|
|
else:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r["done_reason"] if r["done"] else None,
|
|
text=r["response"],
|
|
)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
return process_chat_completion_response(response, request)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
|
params = await self._get_params(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
if "messages" in params:
|
|
s = await self.client.chat(**params)
|
|
else:
|
|
s = await self.client.generate(**params)
|
|
async for chunk in s:
|
|
if "message" in chunk:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
|
text=chunk["message"]["content"],
|
|
)
|
|
else:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
|
text=chunk["response"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
model = await self._get_model(model_id)
|
|
|
|
assert all(not content_has_media(content) for content in contents), (
|
|
"Ollama does not support media for embeddings"
|
|
)
|
|
response = await self.client.embed(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_content_as_str(content) for content in contents],
|
|
)
|
|
embeddings = response["embeddings"]
|
|
|
|
return EmbeddingsResponse(embeddings=embeddings)
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
model = await self.register_helper.register_model(model)
|
|
if model.model_type == ModelType.embedding:
|
|
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
|
|
await self.client.pull(model.provider_resource_id)
|
|
# we use list() here instead of ps() -
|
|
# - ps() only lists running models, not available models
|
|
# - models not currently running are run by the ollama server as needed
|
|
response = await self.client.list()
|
|
available_models = [m["model"] for m in response["models"]]
|
|
if model.provider_resource_id not in available_models:
|
|
raise ValueError(
|
|
f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}"
|
|
)
|
|
|
|
return model
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: Union[str, List[str], List[int], List[List[int]]],
|
|
best_of: Optional[int] = None,
|
|
echo: Optional[bool] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
guided_choice: Optional[List[str]] = None,
|
|
prompt_logprobs: Optional[int] = None,
|
|
) -> OpenAICompletion:
|
|
if not isinstance(prompt, str):
|
|
raise ValueError("Ollama does not support non-string prompts for completion")
|
|
|
|
model_obj = await self._get_model(model)
|
|
params = {
|
|
k: v
|
|
for k, v in {
|
|
"model": model_obj.provider_resource_id,
|
|
"prompt": prompt,
|
|
"best_of": best_of,
|
|
"echo": echo,
|
|
"frequency_penalty": frequency_penalty,
|
|
"logit_bias": logit_bias,
|
|
"logprobs": logprobs,
|
|
"max_tokens": max_tokens,
|
|
"n": n,
|
|
"presence_penalty": presence_penalty,
|
|
"seed": seed,
|
|
"stop": stop,
|
|
"stream": stream,
|
|
"stream_options": stream_options,
|
|
"temperature": temperature,
|
|
"top_p": top_p,
|
|
"user": user,
|
|
}.items()
|
|
if v is not None
|
|
}
|
|
return await self.openai_client.completions.create(**params) # type: ignore
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[OpenAIMessageParam],
|
|
frequency_penalty: Optional[float] = None,
|
|
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
|
functions: Optional[List[Dict[str, Any]]] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_completion_tokens: Optional[int] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
parallel_tool_calls: Optional[bool] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
response_format: Optional[OpenAIResponseFormatParam] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
|
tools: Optional[List[Dict[str, Any]]] = None,
|
|
top_logprobs: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
|
model_obj = await self._get_model(model)
|
|
params = {
|
|
k: v
|
|
for k, v in {
|
|
"model": model_obj.provider_resource_id,
|
|
"messages": messages,
|
|
"frequency_penalty": frequency_penalty,
|
|
"function_call": function_call,
|
|
"functions": functions,
|
|
"logit_bias": logit_bias,
|
|
"logprobs": logprobs,
|
|
"max_completion_tokens": max_completion_tokens,
|
|
"max_tokens": max_tokens,
|
|
"n": n,
|
|
"parallel_tool_calls": parallel_tool_calls,
|
|
"presence_penalty": presence_penalty,
|
|
"response_format": response_format,
|
|
"seed": seed,
|
|
"stop": stop,
|
|
"stream": stream,
|
|
"stream_options": stream_options,
|
|
"temperature": temperature,
|
|
"tool_choice": tool_choice,
|
|
"tools": tools,
|
|
"top_logprobs": top_logprobs,
|
|
"top_p": top_p,
|
|
"user": user,
|
|
}.items()
|
|
if v is not None
|
|
}
|
|
return await self.openai_client.chat.completions.create(**params) # type: ignore
|
|
|
|
async def batch_completion(
|
|
self,
|
|
model_id: str,
|
|
content_batch: List[InterleavedContent],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
):
|
|
raise NotImplementedError("Batch completion is not supported for Ollama")
|
|
|
|
async def batch_chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages_batch: List[List[Message]],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
):
|
|
raise NotImplementedError("Batch chat completion is not supported for Ollama")
|
|
|
|
|
|
async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]:
|
|
async def _convert_content(content) -> dict:
|
|
if isinstance(content, ImageContentItem):
|
|
return {
|
|
"role": message.role,
|
|
"images": [await convert_image_content_to_url(content, download=True, include_format=False)],
|
|
}
|
|
else:
|
|
text = content.text if isinstance(content, TextContentItem) else content
|
|
assert isinstance(text, str)
|
|
return {
|
|
"role": message.role,
|
|
"content": text,
|
|
}
|
|
|
|
if isinstance(message.content, list):
|
|
return [await _convert_content(c) for c in message.content]
|
|
else:
|
|
return [await _convert_content(message.content)]
|