forked from phoenix-oss/llama-stack-mirror
# What does this PR do? TLDR: Changes needed to get 100% passing tests for OpenAI API verification tests when run against Llama Stack with the `together`, `fireworks`, and `openai` providers. And `groq` is better than before, at 88% passing. This cleans up the OpenAI API support for image message types (specifically `image_url` types) and handling of the `response_format` chat completion parameter. Both of these required a few more Pydantic model definitions in our Inference API, just to move from the not-quite-right stubs I had in place to something fleshed out to match the actual OpenAI API specs. As part of testing this, I also found and fixed a bug in the litellm implementation of openai_completion and openai_chat_completion, so the providers based on those should actually be working now. The method `prepare_openai_completion_params` in `llama_stack/providers/utils/inference/openai_compat.py` was improved to actually recursively clean up input parameters, including handling of lists, dicts, and dumping of Pydantic models to dicts. These changes were required to get to 100% passing tests on the OpenAI API verification against the `openai` provider. With the above, the together.ai provider was passing as well as it is without Llama Stack. But, since we have Llama Stack in the middle, I took the opportunity to clean up the together.ai provider so that it now also passes the OpenAI API spec tests we have at 100%. That means together.ai is now passing our verification test better when using an OpenAI client talking to Llama Stack than it is when hitting together.ai directly, without Llama Stack in the middle. And, another round of work for Fireworks to improve translation of incoming OpenAI chat completion requests to Llama Stack chat completion requests gets the fireworks provider passing at 100%. The server-side fireworks.ai tool calling support with OpenAI chat completions and Llama 4 models isn't great yet, but by pointing the OpenAI clients at Llama Stack's API we can clean things up and get everything working as expected for Llama 4 models. ## Test Plan ### OpenAI API Verification Tests I ran the OpenAI API verification tests as below and 100% of the tests passed. First, start a Llama Stack server that runs the `openai` provider with the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template setup to do this out of the box, so I added a `tests/verifications/openai-api-verification-run.yaml` to do this. First, ensure you have the necessary API key environment variables set: ``` export TOGETHER_API_KEY="..." export FIREWORKS_API_KEY="..." export OPENAI_API_KEY="..." ``` Then, run a Llama Stack server that serves up all these providers: ``` llama stack run \ --image-type venv \ tests/verifications/openai-api-verification-run.yaml ``` Finally, generate a new verification report against all these providers, both with and without the Llama Stack server in the middle. ``` python tests/verifications/generate_report.py \ --run-tests \ --provider \ together \ fireworks \ groq \ openai \ together-llama-stack \ fireworks-llama-stack \ groq-llama-stack \ openai-llama-stack ``` You'll see that most of the configurations with Llama Stack in the middle now pass at 100%, even though some of them do not pass at 100% when hitting the backend provider's API directly with an OpenAI client. ### OpenAI Completion Integration Tests with vLLM: I also ran the smaller `test_openai_completion.py` test suite (that's not yet merged with the verification tests) on multiple of the providers, since I had to adjust the method signature of openai_chat_completion a bit and thus had to touch lots of these providers to match. Here's the tests I ran there, all passing: ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` ### OpenAI Completion Integration Tests with ollama ``` INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0" ``` ### OpenAI Completion Integration Tests with together.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo" ``` ### OpenAI Completion Integration Tests with fireworks.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct" --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
335 lines
12 KiB
Python
335 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
|
|
|
from llama_stack_client import AsyncLlamaStackClient
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionMessage,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import (
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAICompletion,
|
|
OpenAIMessageParam,
|
|
OpenAIResponseFormatParam,
|
|
)
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
|
|
|
from .config import PassthroughImplConfig
|
|
|
|
|
|
class PassthroughInferenceAdapter(Inference):
|
|
def __init__(self, config: PassthroughImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, [])
|
|
self.config = config
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
return model
|
|
|
|
def _get_client(self) -> AsyncLlamaStackClient:
|
|
passthrough_url = None
|
|
passthrough_api_key = None
|
|
provider_data = None
|
|
|
|
if self.config.url is not None:
|
|
passthrough_url = self.config.url
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_url:
|
|
raise ValueError(
|
|
'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": <your passthrough url>}'
|
|
)
|
|
passthrough_url = provider_data.passthrough_url
|
|
|
|
if self.config.api_key is not None:
|
|
passthrough_api_key = self.config.api_key.get_secret_value()
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_api_key:
|
|
raise ValueError(
|
|
'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": <your api key>}'
|
|
)
|
|
passthrough_api_key = provider_data.passthrough_api_key
|
|
|
|
return AsyncLlamaStackClient(
|
|
base_url=passthrough_url,
|
|
api_key=passthrough_api_key,
|
|
provider_data=provider_data,
|
|
)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
client = self._get_client()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
request_params = {
|
|
"model_id": model.provider_resource_id,
|
|
"content": content,
|
|
"sampling_params": sampling_params,
|
|
"response_format": response_format,
|
|
"stream": stream,
|
|
"logprobs": logprobs,
|
|
}
|
|
|
|
request_params = {key: value for key, value in request_params.items() if value is not None}
|
|
|
|
# cast everything to json dict
|
|
json_params = self.cast_value_to_json_dict(request_params)
|
|
|
|
# only pass through the not None params
|
|
return await client.inference.completion(**json_params)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
# TODO: revisit this remove tool_calls from messages logic
|
|
for message in messages:
|
|
if hasattr(message, "tool_calls"):
|
|
message.tool_calls = None
|
|
|
|
request_params = {
|
|
"model_id": model.provider_resource_id,
|
|
"messages": messages,
|
|
"sampling_params": sampling_params,
|
|
"tools": tools,
|
|
"tool_choice": tool_choice,
|
|
"tool_prompt_format": tool_prompt_format,
|
|
"response_format": response_format,
|
|
"stream": stream,
|
|
"logprobs": logprobs,
|
|
}
|
|
|
|
# only pass through the not None params
|
|
request_params = {key: value for key, value in request_params.items() if value is not None}
|
|
|
|
# cast everything to json dict
|
|
json_params = self.cast_value_to_json_dict(request_params)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(json_params)
|
|
else:
|
|
return await self._nonstream_chat_completion(json_params)
|
|
|
|
async def _nonstream_chat_completion(self, json_params: Dict[str, Any]) -> ChatCompletionResponse:
|
|
client = self._get_client()
|
|
response = await client.inference.chat_completion(**json_params)
|
|
|
|
return ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=response.completion_message.content.text,
|
|
stop_reason=response.completion_message.stop_reason,
|
|
tool_calls=response.completion_message.tool_calls,
|
|
),
|
|
logprobs=response.logprobs,
|
|
)
|
|
|
|
async def _stream_chat_completion(self, json_params: Dict[str, Any]) -> AsyncGenerator:
|
|
client = self._get_client()
|
|
stream_response = await client.inference.chat_completion(**json_params)
|
|
|
|
async for chunk in stream_response:
|
|
chunk = chunk.to_dict()
|
|
|
|
# temporary hack to remove the metrics from the response
|
|
chunk["metrics"] = []
|
|
chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk)
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
client = self._get_client()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
return await client.inference.embeddings(
|
|
model_id=model.provider_resource_id,
|
|
contents=contents,
|
|
text_truncation=text_truncation,
|
|
output_dimension=output_dimension,
|
|
task_type=task_type,
|
|
)
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: Union[str, List[str], List[int], List[List[int]]],
|
|
best_of: Optional[int] = None,
|
|
echo: Optional[bool] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
guided_choice: Optional[List[str]] = None,
|
|
prompt_logprobs: Optional[int] = None,
|
|
) -> OpenAICompletion:
|
|
client = self._get_client()
|
|
model_obj = await self.model_store.get_model(model)
|
|
|
|
params = await prepare_openai_completion_params(
|
|
model=model_obj.provider_resource_id,
|
|
prompt=prompt,
|
|
best_of=best_of,
|
|
echo=echo,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
presence_penalty=presence_penalty,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
user=user,
|
|
guided_choice=guided_choice,
|
|
prompt_logprobs=prompt_logprobs,
|
|
)
|
|
|
|
return await client.inference.openai_completion(**params)
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[OpenAIMessageParam],
|
|
frequency_penalty: Optional[float] = None,
|
|
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
|
functions: Optional[List[Dict[str, Any]]] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_completion_tokens: Optional[int] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
parallel_tool_calls: Optional[bool] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
response_format: Optional[OpenAIResponseFormatParam] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
|
tools: Optional[List[Dict[str, Any]]] = None,
|
|
top_logprobs: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
|
client = self._get_client()
|
|
model_obj = await self.model_store.get_model(model)
|
|
|
|
params = await prepare_openai_completion_params(
|
|
model=model_obj.provider_resource_id,
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
|
|
return await client.inference.openai_chat_completion(**params)
|
|
|
|
def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]:
|
|
json_params = {}
|
|
for key, value in request_params.items():
|
|
json_input = convert_pydantic_to_json_value(value)
|
|
if isinstance(json_input, dict):
|
|
json_input = {k: v for k, v in json_input.items() if v is not None}
|
|
elif isinstance(json_input, list):
|
|
json_input = [x for x in json_input if x is not None]
|
|
new_input = []
|
|
for x in json_input:
|
|
if isinstance(x, dict):
|
|
x = {k: v for k, v in x.items() if v is not None}
|
|
new_input.append(x)
|
|
json_input = new_input
|
|
|
|
json_params[key] = json_input
|
|
|
|
return json_params
|