llama-stack/tests/test_ollama_inference.py
2024-08-05 12:34:16 -07:00

323 lines
11 KiB
Python

import textwrap
import unittest
from datetime import datetime
from llama_models.llama3_1.api.datatypes import (
BuiltinTool,
UserMessage,
StopReason,
SamplingParams,
SamplingStrategy,
SystemMessage,
)
from llama_toolchain.inference.api_instance import (
get_inference_api_instance,
)
from llama_toolchain.inference.api.datatypes import (
ChatCompletionResponseEventType,
)
from llama_toolchain.inference.api.endpoints import ChatCompletionRequest
from llama_toolchain.inference.api.config import InferenceConfig, OllamaImplConfig
class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
async def asyncSetUp(self):
self.valid_supported_model = "Meta-Llama3.1-8B-Instruct"
ollama_config = OllamaImplConfig(
model="llama3.1:8b-instruct-fp16",
url="http://localhost:11434",
)
# setup ollama
self.api = await get_inference_api_instance(
InferenceConfig(impl_config=ollama_config)
)
await self.api.initialize()
current_date = datetime.now()
formatted_date = current_date.strftime("%d %B %Y")
self.system_prompt = SystemMessage(
content=textwrap.dedent(
f"""
Environment: ipython
Tools: brave_search
Cutting Knowledge Date: December 2023
Today Date:{formatted_date}
"""
),
)
self.system_prompt_with_custom_tool = SystemMessage(
content=textwrap.dedent(
"""
Environment: ipython
Tools: brave_search, wolfram_alpha, photogen
Cutting Knowledge Date: December 2023
Today Date: 30 July 2024
You have access to the following functions:
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Put the entire function call reply on one line
"""
),
)
self.valid_supported_model = "Meta-Llama3.1-8B-Instruct"
async def asyncTearDown(self):
await self.api.shutdown()
async def test_text(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
UserMessage(
content="What is the capital of France?",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
self.assertTrue("Paris" in response.completion_message.content)
self.assertEqual(
response.completion_message.stop_reason, StopReason.end_of_turn
)
async def test_tool_call(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Who is the current US President?",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
)
self.assertEqual(
completion_message.tool_calls[0].tool_name, BuiltinTool.brave_search
)
self.assertTrue(
"president" in completion_message.tool_calls[0].arguments["query"].lower()
)
async def test_code_execution(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Write code to compute the 5th prime number",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
)
self.assertEqual(
completion_message.tool_calls[0].tool_name, BuiltinTool.code_interpreter
)
code = completion_message.tool_calls[0].arguments["code"]
self.assertTrue("def " in code.lower(), code)
async def test_custom_tool(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice?",
),
],
stream=False,
)
iterator = self.api.chat_completion(request)
async for r in iterator:
response = r
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertTrue(
completion_message.stop_reason
in {
StopReason.end_of_turn,
StopReason.end_of_message,
}
)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
)
self.assertEqual(
completion_message.tool_calls[0].tool_name, "get_boiling_point"
)
args = completion_message.tool_calls[0].arguments
self.assertTrue(isinstance(args, dict))
self.assertTrue(args["liquid_name"], "polyjuice")
async def test_text_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
UserMessage(
content="What is the capital of France?",
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
events.append(chunk.event)
response = ""
for e in events[1:-1]:
response += e.delta
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
# last event is of type "complete"
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
# last but 1 event should be of type "progress"
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(
events[-2].stop_reason,
None,
)
self.assertTrue("Paris" in response, response)
async def test_tool_call_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Who is the current US President?",
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
events.append(chunk.event)
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
# last event is of type "complete"
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
async def test_custom_tool_call_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice?",
),
],
stream=True,
)
iterator = self.api.chat_completion(request)
events = []
async for chunk in iterator:
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
events.append(chunk.event)
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
# last event is of type "complete"
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
self.assertEqual(events[-1].stop_reason, StopReason.end_of_turn)
# last but one event should be eom with tool call
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(events[-2].delta.content.tool_name, "get_boiling_point")
self.assertEqual(events[-2].stop_reason, StopReason.end_of_turn)
def test_resolve_ollama_model(self):
ollama_model = self.api.resolve_ollama_model(self.valid_supported_model)
self.assertEqual(ollama_model, "llama3.1:8b-instruct-fp16")
invalid_model = "Meta-Llama3.1-8B"
with self.assertRaisesRegex(
AssertionError, f"Unsupported model: {invalid_model}"
):
self.api.resolve_ollama_model(invalid_model)
async def test_ollama_chat_options(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
UserMessage(
content="What is the capital of France?",
),
],
stream=False,
sampling_params=SamplingParams(
sampling_strategy=SamplingStrategy.top_p,
top_p=0.99,
temperature=1.0,
),
)
options = self.api.get_ollama_chat_options(request)
self.assertEqual(
options,
{
"temperature": 1.0,
"top_p": 0.99,
},
)