llama-stack/tests/integration/eval/test_eval.py
2025-03-23 15:48:14 -07:00

104 lines
3.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
from pathlib import Path
import pytest
from ..datasets.test_datasets import data_url_from_file
# How to run this test:
#
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/eval
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
@pytest.mark.skip(reason="TODO(xiyan): fix this")
def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
dataset = llama_stack_client.datasets.register(
purpose="eval/messages-answer",
source={
"type": "uri",
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
},
)
response = llama_stack_client.datasets.list()
assert any(x.identifier == dataset.identifier for x in response)
rows = llama_stack_client.datasets.iterrows(
dataset_id=dataset.identifier,
limit=3,
)
assert len(rows.data) == 3
scoring_functions = [
scoring_fn_id,
]
benchmark_id = str(uuid.uuid4())
llama_stack_client.benchmarks.register(
benchmark_id=benchmark_id,
dataset_id=dataset.identifier,
scoring_functions=scoring_functions,
)
list_benchmarks = llama_stack_client.benchmarks.list()
assert any(x.identifier == benchmark_id for x in list_benchmarks)
response = llama_stack_client.eval.evaluate_rows(
benchmark_id=benchmark_id,
input_rows=rows.data,
scoring_functions=scoring_functions,
benchmark_config={
"eval_candidate": {
"type": "model",
"model": text_model_id,
"sampling_params": {
"temperature": 0.0,
},
},
},
)
assert len(response.generations) == 3
assert scoring_fn_id in response.scores
@pytest.mark.parametrize("scoring_fn_id", ["basic::subset_of"])
@pytest.mark.skip(reason="TODO(xiyan): fix this")
def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
dataset = llama_stack_client.datasets.register(
purpose="eval/messages-answer",
source={
"type": "uri",
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
},
)
benchmark_id = str(uuid.uuid4())
llama_stack_client.benchmarks.register(
benchmark_id=benchmark_id,
dataset_id=dataset.identifier,
scoring_functions=[scoring_fn_id],
)
response = llama_stack_client.eval.run_eval(
benchmark_id=benchmark_id,
benchmark_config={
"eval_candidate": {
"type": "model",
"model": text_model_id,
"sampling_params": {
"temperature": 0.0,
},
},
},
)
assert response.job_id == "0"
job_status = llama_stack_client.eval.jobs.status(job_id=response.job_id, benchmark_id=benchmark_id)
assert job_status and job_status.status == "completed"
eval_response = llama_stack_client.eval.jobs.retrieve(job_id=response.job_id, benchmark_id=benchmark_id)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert scoring_fn_id in eval_response.scores