llama-stack/llama_stack/providers/tests/vector_io/conftest.py
Ashwin Bharambe 78a481bb22
[memory refactor][2/n] Update faiss and make it pass tests (#830)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Second part:

- updates routing table / router code 
- updates the faiss implementation


## Test Plan

```
pytest -s -v -k sentence test_vector_io.py --env EMBEDDING_DIMENSION=384
```
2025-01-22 10:02:15 -08:00

96 lines
2.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from ..conftest import (
get_provider_fixture_overrides,
get_provider_fixture_overrides_from_test_config,
get_test_config_for_api,
)
from ..inference.fixtures import INFERENCE_FIXTURES
from .fixtures import VECTOR_IO_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "sentence_transformers",
"vector_io": "faiss",
},
id="sentence_transformers",
marks=pytest.mark.sentence_transformers,
),
pytest.param(
{
"inference": "ollama",
"vector_io": "faiss",
},
id="ollama",
marks=pytest.mark.ollama,
),
pytest.param(
{
"inference": "sentence_transformers",
"vector_io": "chroma",
},
id="chroma",
marks=pytest.mark.chroma,
),
pytest.param(
{
"inference": "bedrock",
"vector_io": "qdrant",
},
id="qdrant",
marks=pytest.mark.qdrant,
),
pytest.param(
{
"inference": "fireworks",
"vector_io": "weaviate",
},
id="weaviate",
marks=pytest.mark.weaviate,
),
]
def pytest_configure(config):
for fixture_name in VECTOR_IO_FIXTURES:
config.addinivalue_line(
"markers",
f"{fixture_name}: marks tests as {fixture_name} specific",
)
def pytest_generate_tests(metafunc):
test_config = get_test_config_for_api(metafunc.config, "vector_io")
if "embedding_model" in metafunc.fixturenames:
model = getattr(test_config, "embedding_model", None)
# Fall back to the default if not specified by the config file
model = model or metafunc.config.getoption("--embedding-model")
if model:
params = [pytest.param(model, id="")]
else:
params = [pytest.param("all-MiniLM-L6-v2", id="")]
metafunc.parametrize("embedding_model", params, indirect=True)
if "vector_io_stack" in metafunc.fixturenames:
available_fixtures = {
"inference": INFERENCE_FIXTURES,
"vector_io": VECTOR_IO_FIXTURES,
}
combinations = (
get_provider_fixture_overrides_from_test_config(
metafunc.config, "vector_io", DEFAULT_PROVIDER_COMBINATIONS
)
or get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS
)
metafunc.parametrize("vector_io_stack", combinations, indirect=True)