forked from phoenix-oss/llama-stack-mirror
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. Second part: - updates routing table / router code - updates the faiss implementation ## Test Plan ``` pytest -s -v -k sentence test_vector_io.py --env EMBEDDING_DIMENSION=384 ```
258 lines
8.6 KiB
Python
258 lines
8.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import random
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.memory import MemoryBankDocument
|
|
from llama_stack_client.types.memory_insert_params import Document
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def empty_memory_bank_registry(llama_stack_client):
|
|
memory_banks = [
|
|
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
|
|
]
|
|
for memory_bank_id in memory_banks:
|
|
llama_stack_client.memory_banks.unregister(memory_bank_id=memory_bank_id)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def single_entry_memory_bank_registry(llama_stack_client, empty_memory_bank_registry):
|
|
memory_bank_id = f"test_bank_{random.randint(1000, 9999)}"
|
|
llama_stack_client.memory_banks.register(
|
|
memory_bank_id=memory_bank_id,
|
|
params={
|
|
"memory_bank_type": "vector",
|
|
"embedding_model": "all-MiniLM-L6-v2",
|
|
"chunk_size_in_tokens": 512,
|
|
"overlap_size_in_tokens": 64,
|
|
},
|
|
provider_id="faiss",
|
|
)
|
|
memory_banks = [
|
|
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
|
|
]
|
|
return memory_banks
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def sample_documents():
|
|
return [
|
|
MemoryBankDocument(
|
|
document_id="test-doc-1",
|
|
content="Python is a high-level programming language.",
|
|
metadata={"category": "programming", "difficulty": "beginner"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="test-doc-2",
|
|
content="Machine learning is a subset of artificial intelligence.",
|
|
metadata={"category": "AI", "difficulty": "advanced"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="test-doc-3",
|
|
content="Data structures are fundamental to computer science.",
|
|
metadata={"category": "computer science", "difficulty": "intermediate"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="test-doc-4",
|
|
content="Neural networks are inspired by biological neural networks.",
|
|
metadata={"category": "AI", "difficulty": "advanced"},
|
|
),
|
|
]
|
|
|
|
|
|
def assert_valid_response(response):
|
|
assert len(response.chunks) > 0
|
|
assert len(response.scores) > 0
|
|
assert len(response.chunks) == len(response.scores)
|
|
for chunk in response.chunks:
|
|
assert isinstance(chunk.content, str)
|
|
assert chunk.document_id is not None
|
|
|
|
|
|
def test_memory_bank_retrieve(llama_stack_client, empty_memory_bank_registry):
|
|
# Register a memory bank first
|
|
memory_bank_id = f"test_bank_{random.randint(1000, 9999)}"
|
|
llama_stack_client.memory_banks.register(
|
|
memory_bank_id=memory_bank_id,
|
|
params={
|
|
"memory_bank_type": "vector",
|
|
"embedding_model": "all-MiniLM-L6-v2",
|
|
"chunk_size_in_tokens": 512,
|
|
"overlap_size_in_tokens": 64,
|
|
},
|
|
provider_id="faiss",
|
|
)
|
|
|
|
# Retrieve the memory bank and validate its properties
|
|
response = llama_stack_client.memory_banks.retrieve(memory_bank_id=memory_bank_id)
|
|
assert response is not None
|
|
assert response.identifier == memory_bank_id
|
|
assert response.type == "memory_bank"
|
|
assert response.memory_bank_type == "vector"
|
|
assert response.embedding_model == "all-MiniLM-L6-v2"
|
|
assert response.chunk_size_in_tokens == 512
|
|
assert response.overlap_size_in_tokens == 64
|
|
assert response.provider_id == "faiss"
|
|
assert response.provider_resource_id == memory_bank_id
|
|
|
|
|
|
def test_memory_bank_list(llama_stack_client, empty_memory_bank_registry):
|
|
memory_banks_after_register = [
|
|
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
|
|
]
|
|
assert len(memory_banks_after_register) == 0
|
|
|
|
|
|
def test_memory_bank_register(llama_stack_client, empty_memory_bank_registry):
|
|
memory_provider_id = "faiss"
|
|
memory_bank_id = f"test_bank_{random.randint(1000, 9999)}"
|
|
llama_stack_client.memory_banks.register(
|
|
memory_bank_id=memory_bank_id,
|
|
params={
|
|
"memory_bank_type": "vector",
|
|
"embedding_model": "all-MiniLM-L6-v2",
|
|
"chunk_size_in_tokens": 512,
|
|
"overlap_size_in_tokens": 64,
|
|
},
|
|
provider_id=memory_provider_id,
|
|
)
|
|
|
|
memory_banks_after_register = [
|
|
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
|
|
]
|
|
assert memory_banks_after_register == [memory_bank_id]
|
|
|
|
|
|
def test_memory_bank_unregister(llama_stack_client, single_entry_memory_bank_registry):
|
|
memory_banks = [
|
|
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
|
|
]
|
|
assert len(memory_banks) == 1
|
|
|
|
memory_bank_id = memory_banks[0]
|
|
llama_stack_client.memory_banks.unregister(memory_bank_id=memory_bank_id)
|
|
|
|
memory_banks = [
|
|
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
|
|
]
|
|
assert len(memory_banks) == 0
|
|
|
|
|
|
def test_memory_bank_insert_inline_and_query(
|
|
llama_stack_client, single_entry_memory_bank_registry, sample_documents
|
|
):
|
|
memory_bank_id = single_entry_memory_bank_registry[0]
|
|
llama_stack_client.memory.insert(
|
|
bank_id=memory_bank_id,
|
|
documents=sample_documents,
|
|
)
|
|
|
|
# Query with a direct match
|
|
query1 = "programming language"
|
|
response1 = llama_stack_client.memory.query(
|
|
bank_id=memory_bank_id,
|
|
query=query1,
|
|
)
|
|
assert_valid_response(response1)
|
|
assert any("Python" in chunk.content for chunk in response1.chunks)
|
|
|
|
# Query with semantic similarity
|
|
query2 = "AI and brain-inspired computing"
|
|
response2 = llama_stack_client.memory.query(
|
|
bank_id=memory_bank_id,
|
|
query=query2,
|
|
)
|
|
assert_valid_response(response2)
|
|
assert any("neural networks" in chunk.content.lower() for chunk in response2.chunks)
|
|
|
|
# Query with limit on number of results (max_chunks=2)
|
|
query3 = "computer"
|
|
response3 = llama_stack_client.memory.query(
|
|
bank_id=memory_bank_id,
|
|
query=query3,
|
|
params={"max_chunks": 2},
|
|
)
|
|
assert_valid_response(response3)
|
|
assert len(response3.chunks) <= 2
|
|
|
|
# Query with threshold on similarity score
|
|
query4 = "computer"
|
|
response4 = llama_stack_client.memory.query(
|
|
bank_id=memory_bank_id,
|
|
query=query4,
|
|
params={"score_threshold": 0.01},
|
|
)
|
|
assert_valid_response(response4)
|
|
assert all(score >= 0.01 for score in response4.scores)
|
|
|
|
|
|
def test_memory_bank_insert_from_url_and_query(
|
|
llama_stack_client, empty_memory_bank_registry
|
|
):
|
|
providers = [p for p in llama_stack_client.providers.list() if p.api == "memory"]
|
|
assert len(providers) > 0
|
|
|
|
memory_provider_id = providers[0].provider_id
|
|
memory_bank_id = "test_bank"
|
|
|
|
llama_stack_client.memory_banks.register(
|
|
memory_bank_id=memory_bank_id,
|
|
params={
|
|
"memory_bank_type": "vector",
|
|
"embedding_model": "all-MiniLM-L6-v2",
|
|
"chunk_size_in_tokens": 512,
|
|
"overlap_size_in_tokens": 64,
|
|
},
|
|
provider_id=memory_provider_id,
|
|
)
|
|
|
|
# list to check memory bank is successfully registered
|
|
available_memory_banks = [
|
|
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
|
|
]
|
|
assert memory_bank_id in available_memory_banks
|
|
|
|
# URLs of documents to insert
|
|
# TODO: Move to test/memory/resources then update the url to
|
|
# https://raw.githubusercontent.com/meta-llama/llama-stack/main/tests/memory/resources/{url}
|
|
urls = [
|
|
"memory_optimizations.rst",
|
|
"chat.rst",
|
|
"llama3.rst",
|
|
]
|
|
documents = [
|
|
Document(
|
|
document_id=f"num-{i}",
|
|
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
|
|
mime_type="text/plain",
|
|
metadata={},
|
|
)
|
|
for i, url in enumerate(urls)
|
|
]
|
|
|
|
llama_stack_client.memory.insert(
|
|
bank_id=memory_bank_id,
|
|
documents=documents,
|
|
)
|
|
|
|
# Query for the name of method
|
|
response1 = llama_stack_client.memory.query(
|
|
bank_id=memory_bank_id,
|
|
query="What's the name of the fine-tunning method used?",
|
|
)
|
|
assert_valid_response(response1)
|
|
assert any("lora" in chunk.content.lower() for chunk in response1.chunks)
|
|
|
|
# Query for the name of model
|
|
response2 = llama_stack_client.memory.query(
|
|
bank_id=memory_bank_id,
|
|
query="Which Llama model is mentioned?",
|
|
)
|
|
assert_valid_response(response1)
|
|
assert any("llama2" in chunk.content.lower() for chunk in response2.chunks)
|