forked from phoenix-oss/llama-stack-mirror
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
77 lines
2.9 KiB
Python
77 lines
2.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import random
|
|
|
|
import pytest
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def empty_vector_db_registry(llama_stack_client):
|
|
vector_dbs = [vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()]
|
|
for vector_db_id in vector_dbs:
|
|
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def single_entry_vector_db_registry(llama_stack_client, empty_vector_db_registry):
|
|
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
|
|
llama_stack_client.vector_dbs.register(
|
|
vector_db_id=vector_db_id,
|
|
embedding_model="all-MiniLM-L6-v2",
|
|
embedding_dimension=384,
|
|
provider_id="faiss",
|
|
)
|
|
vector_dbs = [vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()]
|
|
return vector_dbs
|
|
|
|
|
|
def test_vector_db_retrieve(llama_stack_client, embedding_model, empty_vector_db_registry):
|
|
# Register a memory bank first
|
|
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
|
|
llama_stack_client.vector_dbs.register(
|
|
vector_db_id=vector_db_id,
|
|
embedding_model=embedding_model,
|
|
embedding_dimension=384,
|
|
provider_id="faiss",
|
|
)
|
|
|
|
# Retrieve the memory bank and validate its properties
|
|
response = llama_stack_client.vector_dbs.retrieve(vector_db_id=vector_db_id)
|
|
assert response is not None
|
|
assert response.identifier == vector_db_id
|
|
assert response.embedding_model == embedding_model
|
|
assert response.provider_id == "faiss"
|
|
assert response.provider_resource_id == vector_db_id
|
|
|
|
|
|
def test_vector_db_list(llama_stack_client, empty_vector_db_registry):
|
|
vector_dbs_after_register = [vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()]
|
|
assert len(vector_dbs_after_register) == 0
|
|
|
|
|
|
def test_vector_db_register(llama_stack_client, embedding_model, empty_vector_db_registry):
|
|
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
|
|
llama_stack_client.vector_dbs.register(
|
|
vector_db_id=vector_db_id,
|
|
embedding_model=embedding_model,
|
|
embedding_dimension=384,
|
|
provider_id="faiss",
|
|
)
|
|
|
|
vector_dbs_after_register = [vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()]
|
|
assert vector_dbs_after_register == [vector_db_id]
|
|
|
|
|
|
def test_vector_db_unregister(llama_stack_client, single_entry_vector_db_registry):
|
|
vector_dbs = [vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()]
|
|
assert len(vector_dbs) == 1
|
|
|
|
vector_db_id = vector_dbs[0]
|
|
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
|
|
|
|
vector_dbs = [vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()]
|
|
assert len(vector_dbs) == 0
|