forked from phoenix-oss/llama-stack-mirror
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
239 lines
9.1 KiB
Python
239 lines
9.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator
|
|
|
|
import httpx
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import Message, StopReason
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from llama_models.sku_list import resolve_model
|
|
from ollama import AsyncClient
|
|
|
|
from llama_toolchain.inference.api import * # noqa: F403
|
|
from llama_toolchain.inference.prepare_messages import prepare_messages
|
|
|
|
# TODO: Eventually this will move to the llama cli model list command
|
|
# mapping of Model SKUs to ollama models
|
|
OLLAMA_SUPPORTED_SKUS = {
|
|
# "Meta-Llama3.1-8B-Instruct": "llama3.1",
|
|
"Meta-Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
|
|
"Meta-Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
|
|
}
|
|
|
|
|
|
class OllamaInferenceAdapter(Inference):
|
|
def __init__(self, url: str) -> None:
|
|
self.url = url
|
|
tokenizer = Tokenizer.get_instance()
|
|
self.formatter = ChatFormat(tokenizer)
|
|
|
|
@property
|
|
def client(self) -> AsyncClient:
|
|
return AsyncClient(host=self.url)
|
|
|
|
async def initialize(self) -> None:
|
|
try:
|
|
await self.client.ps()
|
|
except httpx.ConnectError as e:
|
|
raise RuntimeError(
|
|
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
|
|
) from e
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
|
|
ollama_messages = []
|
|
for message in messages:
|
|
if message.role == "ipython":
|
|
role = "tool"
|
|
else:
|
|
role = message.role
|
|
ollama_messages.append({"role": role, "content": message.content})
|
|
|
|
return ollama_messages
|
|
|
|
def resolve_ollama_model(self, model_name: str) -> str:
|
|
model = resolve_model(model_name)
|
|
assert (
|
|
model is not None
|
|
and model.descriptor(shorten_default_variant=True) in OLLAMA_SUPPORTED_SKUS
|
|
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(OLLAMA_SUPPORTED_SKUS.keys())}"
|
|
|
|
return OLLAMA_SUPPORTED_SKUS.get(model.descriptor(shorten_default_variant=True))
|
|
|
|
def get_ollama_chat_options(self, request: ChatCompletionRequest) -> dict:
|
|
options = {}
|
|
if request.sampling_params is not None:
|
|
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
|
if getattr(request.sampling_params, attr):
|
|
options[attr] = getattr(request.sampling_params, attr)
|
|
if (
|
|
request.sampling_params.repetition_penalty is not None
|
|
and request.sampling_params.repetition_penalty != 1.0
|
|
):
|
|
options["repeat_penalty"] = request.sampling_params.repetition_penalty
|
|
|
|
return options
|
|
|
|
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
messages = prepare_messages(request)
|
|
# accumulate sampling params and other options to pass to ollama
|
|
options = self.get_ollama_chat_options(request)
|
|
ollama_model = self.resolve_ollama_model(request.model)
|
|
|
|
res = await self.client.ps()
|
|
need_model_pull = True
|
|
for r in res["models"]:
|
|
if ollama_model == r["model"]:
|
|
need_model_pull = False
|
|
break
|
|
|
|
if need_model_pull:
|
|
print(f"Pulling model: {ollama_model}")
|
|
status = await self.client.pull(ollama_model)
|
|
assert (
|
|
status["status"] == "success"
|
|
), f"Failed to pull model {self.model} in ollama"
|
|
|
|
if not request.stream:
|
|
r = await self.client.chat(
|
|
model=ollama_model,
|
|
messages=self._messages_to_ollama_messages(messages),
|
|
stream=False,
|
|
options=options,
|
|
)
|
|
stop_reason = None
|
|
if r["done"]:
|
|
if r["done_reason"] == "stop":
|
|
stop_reason = StopReason.end_of_turn
|
|
elif r["done_reason"] == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
completion_message = self.formatter.decode_assistant_message_from_content(
|
|
r["message"]["content"], stop_reason
|
|
)
|
|
yield ChatCompletionResponse(
|
|
completion_message=completion_message,
|
|
logprobs=None,
|
|
)
|
|
else:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
stream = await self.client.chat(
|
|
model=ollama_model,
|
|
messages=self._messages_to_ollama_messages(messages),
|
|
stream=True,
|
|
options=options,
|
|
)
|
|
|
|
buffer = ""
|
|
ipython = False
|
|
stop_reason = None
|
|
|
|
async for chunk in stream:
|
|
if chunk["done"]:
|
|
if stop_reason is None and chunk["done_reason"] == "stop":
|
|
stop_reason = StopReason.end_of_turn
|
|
elif stop_reason is None and chunk["done_reason"] == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
break
|
|
|
|
text = chunk["message"]["content"]
|
|
|
|
# check if its a tool call ( aka starts with <|python_tag|> )
|
|
if not ipython and text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
buffer += text
|
|
continue
|
|
|
|
if ipython:
|
|
if text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
continue
|
|
elif text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
continue
|
|
|
|
buffer += text
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
else:
|
|
buffer += text
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
# parse tool calls and report errors
|
|
message = self.formatter.decode_assistant_message_from_content(
|
|
buffer, stop_reason
|
|
)
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|