forked from phoenix-oss/llama-stack-mirror
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
108 lines
3.3 KiB
Python
108 lines
3.3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import json
|
|
from typing import Any, AsyncGenerator
|
|
|
|
import fire
|
|
import httpx
|
|
from pydantic import BaseModel
|
|
from termcolor import cprint
|
|
|
|
from llama_toolchain.core.datatypes import RemoteProviderConfig
|
|
|
|
from .api import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionRequest,
|
|
Inference,
|
|
UserMessage,
|
|
)
|
|
from .event_logger import EventLogger
|
|
|
|
|
|
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Inference:
|
|
return InferenceClient(config.url)
|
|
|
|
|
|
def encodable_dict(d: BaseModel):
|
|
return json.loads(d.json())
|
|
|
|
|
|
class InferenceClient(Inference):
|
|
def __init__(self, base_url: str):
|
|
self.base_url = base_url
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
async with httpx.AsyncClient() as client:
|
|
async with client.stream(
|
|
"POST",
|
|
f"{self.base_url}/inference/chat_completion",
|
|
json={
|
|
"request": encodable_dict(request),
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
) as response:
|
|
if response.status_code != 200:
|
|
content = await response.aread()
|
|
cprint(
|
|
f"Error: HTTP {response.status_code} {content.decode()}", "red"
|
|
)
|
|
return
|
|
|
|
async for line in response.aiter_lines():
|
|
if line.startswith("data:"):
|
|
data = line[len("data: ") :]
|
|
try:
|
|
if request.stream:
|
|
if "error" in data:
|
|
cprint(data, "red")
|
|
continue
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
**json.loads(data)
|
|
)
|
|
else:
|
|
yield ChatCompletionResponse(**json.loads(data))
|
|
except Exception as e:
|
|
print(data)
|
|
print(f"Error with parsing or validation: {e}")
|
|
|
|
|
|
async def run_main(host: str, port: int, stream: bool):
|
|
client = InferenceClient(f"http://{host}:{port}")
|
|
|
|
message = UserMessage(content="hello world, troll me in two-paragraphs about 42")
|
|
cprint(f"User>{message.content}", "green")
|
|
iterator = client.chat_completion(
|
|
ChatCompletionRequest(
|
|
model="Meta-Llama3.1-8B-Instruct",
|
|
messages=[message],
|
|
stream=stream,
|
|
)
|
|
)
|
|
async for log in EventLogger().log(iterator):
|
|
log.print()
|
|
|
|
|
|
def main(host: str, port: int, stream: bool = True):
|
|
asyncio.run(run_main(host, port, stream))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|