forked from phoenix-oss/llama-stack-mirror
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
192 lines
7.2 KiB
Python
192 lines
7.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
|
|
from typing import AsyncIterator, Union
|
|
|
|
from llama_models.llama3.api.datatypes import StopReason
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from llama_toolchain.inference.api import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEvent,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
Inference,
|
|
ToolCallDelta,
|
|
ToolCallParseStatus,
|
|
)
|
|
from llama_toolchain.inference.prepare_messages import prepare_messages
|
|
from .config import MetaReferenceImplConfig
|
|
from .model_parallel import LlamaModelParallelGenerator
|
|
|
|
|
|
# there's a single model parallel process running serving the model. for now,
|
|
# we don't support multiple concurrent requests to this process.
|
|
SEMAPHORE = asyncio.Semaphore(1)
|
|
|
|
|
|
class MetaReferenceInferenceImpl(Inference):
|
|
def __init__(self, config: MetaReferenceImplConfig) -> None:
|
|
self.config = config
|
|
model = resolve_model(config.model)
|
|
if model is None:
|
|
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
|
|
self.model = model
|
|
# verify that the checkpoint actually is for this model lol
|
|
|
|
async def initialize(self) -> None:
|
|
self.generator = LlamaModelParallelGenerator(self.config)
|
|
self.generator.start()
|
|
|
|
async def shutdown(self) -> None:
|
|
self.generator.stop()
|
|
|
|
# hm, when stream=False, we should not be doing SSE :/ which is what the
|
|
# top-level server is going to do. make the typing more specific here
|
|
async def chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncIterator[
|
|
Union[ChatCompletionResponseStreamChunk, ChatCompletionResponse]
|
|
]:
|
|
messages = prepare_messages(request)
|
|
model = resolve_model(request.model)
|
|
if model is None:
|
|
raise RuntimeError(
|
|
f"Unknown model: {request.model}, Run `llama model list`"
|
|
)
|
|
elif model.descriptor() != self.model.descriptor():
|
|
raise RuntimeError(
|
|
f"Model mismatch: {request.model} != {self.model.descriptor()}"
|
|
)
|
|
|
|
if SEMAPHORE.locked():
|
|
raise RuntimeError("Only one concurrent request is supported")
|
|
|
|
async with SEMAPHORE:
|
|
if request.stream:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
|
|
tokens = []
|
|
logprobs = []
|
|
|
|
stop_reason = None
|
|
|
|
buffer = ""
|
|
ipython = False
|
|
|
|
for token_result in self.generator.chat_completion(
|
|
messages=messages,
|
|
temperature=request.sampling_params.temperature,
|
|
top_p=request.sampling_params.top_p,
|
|
max_gen_len=request.sampling_params.max_tokens,
|
|
logprobs=request.logprobs,
|
|
tool_prompt_format=request.tool_prompt_format,
|
|
):
|
|
buffer += token_result.text
|
|
tokens.append(token_result.token)
|
|
|
|
if not ipython and buffer.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
buffer = buffer[len("<|python_tag|>") :]
|
|
continue
|
|
|
|
if not request.stream:
|
|
if request.logprobs:
|
|
logprobs.append(token_result.logprob)
|
|
|
|
continue
|
|
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
if ipython:
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
else:
|
|
delta = text
|
|
|
|
if stop_reason is None:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
# TODO(ashwin): parse tool calls separately here and report errors?
|
|
# if someone breaks the iteration before coming here we are toast
|
|
message = self.generator.formatter.decode_assistant_message(
|
|
tokens, stop_reason
|
|
)
|
|
if request.stream:
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
# TODO(ashwin): what else do we need to send out here when everything finishes?
|
|
else:
|
|
yield ChatCompletionResponse(
|
|
completion_message=message,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|