forked from phoenix-oss/llama-stack-mirror
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
194 lines
6 KiB
Python
194 lines
6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import uuid
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import faiss
|
|
import httpx
|
|
import numpy as np
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from llama_toolchain.memory.api import * # noqa: F403
|
|
from .config import FaissImplConfig
|
|
|
|
|
|
async def content_from_doc(doc: MemoryBankDocument) -> str:
|
|
if isinstance(doc.content, URL):
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.get(doc.content.uri)
|
|
return r.text
|
|
|
|
return interleaved_text_media_as_str(doc.content)
|
|
|
|
|
|
def make_overlapped_chunks(
|
|
text: str, window_len: int, overlap_len: int
|
|
) -> List[Tuple[str, int]]:
|
|
tokenizer = Tokenizer.get_instance()
|
|
tokens = tokenizer.encode(text, bos=False, eos=False)
|
|
|
|
chunks = []
|
|
for i in range(0, len(tokens), window_len - overlap_len):
|
|
toks = tokens[i : i + window_len]
|
|
chunk = tokenizer.decode(toks)
|
|
chunks.append((chunk, len(toks)))
|
|
|
|
return chunks
|
|
|
|
|
|
@dataclass
|
|
class BankState:
|
|
bank: MemoryBank
|
|
index: Optional[faiss.IndexFlatL2] = None
|
|
doc_by_id: Dict[str, MemoryBankDocument] = field(default_factory=dict)
|
|
id_by_index: Dict[int, str] = field(default_factory=dict)
|
|
chunk_by_index: Dict[int, str] = field(default_factory=dict)
|
|
|
|
async def insert_documents(
|
|
self,
|
|
model: "SentenceTransformer",
|
|
documents: List[MemoryBankDocument],
|
|
) -> None:
|
|
tokenizer = Tokenizer.get_instance()
|
|
chunk_size = self.bank.config.chunk_size_in_tokens
|
|
|
|
for doc in documents:
|
|
indexlen = len(self.id_by_index)
|
|
self.doc_by_id[doc.document_id] = doc
|
|
|
|
content = await content_from_doc(doc)
|
|
chunks = make_overlapped_chunks(
|
|
content,
|
|
self.bank.config.chunk_size_in_tokens,
|
|
self.bank.config.overlap_size_in_tokens
|
|
or (self.bank.config.chunk_size_in_tokens // 4),
|
|
)
|
|
embeddings = model.encode([x[0] for x in chunks]).astype(np.float32)
|
|
await self._ensure_index(embeddings.shape[1])
|
|
|
|
self.index.add(embeddings)
|
|
for i, chunk in enumerate(chunks):
|
|
self.chunk_by_index[indexlen + i] = Chunk(
|
|
content=chunk[0],
|
|
token_count=chunk[1],
|
|
document_id=doc.document_id,
|
|
)
|
|
print(f"Adding chunk #{indexlen + i} tokens={chunk[1]}")
|
|
self.id_by_index[indexlen + i] = doc.document_id
|
|
|
|
async def query_documents(
|
|
self,
|
|
model: "SentenceTransformer",
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
if params is None:
|
|
params = {}
|
|
k = params.get("max_chunks", 3)
|
|
|
|
def _process(c) -> str:
|
|
if isinstance(c, str):
|
|
return c
|
|
else:
|
|
return "<media>"
|
|
|
|
if isinstance(query, list):
|
|
query_str = " ".join([_process(c) for c in query])
|
|
else:
|
|
query_str = _process(query)
|
|
|
|
query_vector = model.encode([query_str])[0]
|
|
distances, indices = self.index.search(
|
|
query_vector.reshape(1, -1).astype(np.float32), k
|
|
)
|
|
|
|
chunks = []
|
|
scores = []
|
|
for d, i in zip(distances[0], indices[0]):
|
|
if i < 0:
|
|
continue
|
|
chunks.append(self.chunk_by_index[int(i)])
|
|
scores.append(1.0 / float(d))
|
|
|
|
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
|
|
|
async def _ensure_index(self, dimension: int) -> faiss.IndexFlatL2:
|
|
if self.index is None:
|
|
self.index = faiss.IndexFlatL2(dimension)
|
|
return self.index
|
|
|
|
|
|
class FaissMemoryImpl(Memory):
|
|
def __init__(self, config: FaissImplConfig) -> None:
|
|
self.config = config
|
|
self.model = None
|
|
self.states = {}
|
|
|
|
async def initialize(self) -> None: ...
|
|
|
|
async def shutdown(self) -> None: ...
|
|
|
|
async def create_memory_bank(
|
|
self,
|
|
name: str,
|
|
config: MemoryBankConfig,
|
|
url: Optional[URL] = None,
|
|
) -> MemoryBank:
|
|
assert url is None, "URL is not supported for this implementation"
|
|
assert (
|
|
config.type == MemoryBankType.vector.value
|
|
), f"Only vector banks are supported {config.type}"
|
|
|
|
bank_id = str(uuid.uuid4())
|
|
bank = MemoryBank(
|
|
bank_id=bank_id,
|
|
name=name,
|
|
config=config,
|
|
url=url,
|
|
)
|
|
state = BankState(bank=bank)
|
|
self.states[bank_id] = state
|
|
return bank
|
|
|
|
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
|
|
if bank_id not in self.states:
|
|
return None
|
|
return self.states[bank_id].bank
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
assert bank_id in self.states, f"Bank {bank_id} not found"
|
|
state = self.states[bank_id]
|
|
|
|
await state.insert_documents(self.get_model(), documents)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
assert bank_id in self.states, f"Bank {bank_id} not found"
|
|
state = self.states[bank_id]
|
|
|
|
return await state.query_documents(self.get_model(), query, params)
|
|
|
|
def get_model(self) -> "SentenceTransformer":
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
if self.model is None:
|
|
print("Loading sentence transformer")
|
|
self.model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
|
return self.model
|