llama-stack/llama_stack/providers/tests/agents/fixtures.py
Xi Yan 7c1e3daa75
[bugfix] fix meta-reference agents w/ safety multiple model loading pytest (#694)
# What does this PR do?

- Fix broken pytest for meta-reference's agents
- Safety model needs to be registered to a different provider id from
inference model in order to be recognized



## Test Plan
```
torchrun $CONDA_PREFIX/bin/pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "meta_reference" --safety-shield meta-llama/Llama-Guard-3-1B --inference-model meta-llama/Llama-3.1-8B-Instruct
```
**Before**
<img width="845" alt="image"
src="https://github.com/user-attachments/assets/83818fe1-2179-4e9c-a753-bf1472a2f01d"
/>



**After**
<img width="851" alt="image"
src="https://github.com/user-attachments/assets/1cf8124b-14e2-47bf-80fd-ef8b4b3f6fd9"
/>


**Other test not broken**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-30 16:25:46 -08:00

122 lines
3.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import tempfile
import pytest
import pytest_asyncio
from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.agents.meta_reference import (
MetaReferenceAgentsImplConfig,
)
from llama_stack.providers.tests.resolver import construct_stack_for_test
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from ..conftest import ProviderFixture, remote_stack_fixture
def pick_inference_model(inference_model):
# This is not entirely satisfactory. The fixture `inference_model` can correspond to
# multiple models when you need to run a safety model in addition to normal agent
# inference model. We filter off the safety model by looking for "Llama-Guard"
if isinstance(inference_model, list):
inference_model = next(m for m in inference_model if "Llama-Guard" not in m)
assert inference_model is not None
return inference_model
@pytest.fixture(scope="session")
def agents_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def agents_meta_reference() -> ProviderFixture:
sqlite_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
return ProviderFixture(
providers=[
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=MetaReferenceAgentsImplConfig(
# TODO: make this an in-memory store
persistence_store=SqliteKVStoreConfig(
db_path=sqlite_file.name,
),
).model_dump(),
)
],
)
AGENTS_FIXTURES = ["meta_reference", "remote"]
@pytest_asyncio.fixture(scope="session")
async def agents_stack(request, inference_model, safety_shield):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["inference", "safety", "memory", "agents"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if key == "inference":
providers[key].append(
Provider(
provider_id="agents_memory_provider",
provider_type="inline::sentence-transformers",
config={},
)
)
if fixture.provider_data:
provider_data.update(fixture.provider_data)
inference_models = (
inference_model if isinstance(inference_model, list) else [inference_model]
)
# NOTE: meta-reference provider needs 1 provider per model, lookup provider_id from provider config
model_to_provider_id = {}
for provider in providers["inference"]:
if "model" in provider.config:
model_to_provider_id[provider.config["model"]] = provider.provider_id
models = []
for model in inference_models:
if model in model_to_provider_id:
provider_id = model_to_provider_id[model]
else:
provider_id = providers["inference"][0].provider_id
models.append(
ModelInput(
model_id=model,
model_type=ModelType.llm,
provider_id=provider_id,
)
)
models.append(
ModelInput(
model_id="all-MiniLM-L6-v2",
model_type=ModelType.embedding,
provider_id="agents_memory_provider",
metadata={"embedding_dimension": 384},
)
)
test_stack = await construct_stack_for_test(
[Api.agents, Api.inference, Api.safety, Api.memory],
providers,
provider_data,
models=models,
shields=[safety_shield] if safety_shield else [],
)
return test_stack