forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This commit introduces a new logging system that allows loggers to be assigned a category while retaining the logger name based on the file name. The log format includes both the logger name and the category, producing output like: ``` INFO 2025-03-03 21:44:11,323 llama_stack.distribution.stack:103 [core]: Tool_groups: builtin::websearch served by tavily-search ``` Key features include: - Category-based logging: Loggers can be assigned a category (e.g., "core", "server") when programming. The logger can be loaded like this: `logger = get_logger(name=__name__, category="server")` - Environment variable control: Log levels can be configured per-category using the `LLAMA_STACK_LOGGING` environment variable. For example: `LLAMA_STACK_LOGGING="server=DEBUG;core=debug"` enables DEBUG level for the "server" and "core" categories. - `LLAMA_STACK_LOGGING="all=debug"` sets DEBUG level globally for all categories and third-party libraries. This provides fine-grained control over logging levels while maintaining a clean and informative log format. The formatter uses the rich library which provides nice colors better stack traces like so: ``` ERROR 2025-03-03 21:49:37,124 asyncio:1758 [uncategorized]: unhandled exception during asyncio.run() shutdown task: <Task finished name='Task-16' coro=<handle_signal.<locals>.shutdown() done, defined at /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:146> exception=UnboundLocalError("local variable 'loop' referenced before assignment")> ╭────────────────────────────────────── Traceback (most recent call last) ───────────────────────────────────────╮ │ /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:178 in shutdown │ │ │ │ 175 │ │ except asyncio.CancelledError: │ │ 176 │ │ │ pass │ │ 177 │ │ finally: │ │ ❱ 178 │ │ │ loop.stop() │ │ 179 │ │ │ 180 │ loop = asyncio.get_running_loop() │ │ 181 │ loop.create_task(shutdown()) │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ UnboundLocalError: local variable 'loop' referenced before assignment ``` Co-authored-by: Ashwin Bharambe <@ashwinb> Signed-off-by: Sébastien Han <seb@redhat.com> [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan ``` python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml INFO 2025-03-03 21:55:35,918 __main__:365 [server]: Using config file: llama_stack/templates/ollama/run.yaml INFO 2025-03-03 21:55:35,925 __main__:378 [server]: Run configuration: INFO 2025-03-03 21:55:35,928 __main__:380 [server]: apis: - agents ``` [//]: # (## Documentation) --------- Signed-off-by: Sébastien Han <seb@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
228 lines
8.2 KiB
Python
228 lines
8.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator, AsyncIterator, List, Optional, Union
|
|
|
|
import litellm
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
JsonSchemaResponseFormat,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.models.models import Model
|
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_message_to_openai_dict_new,
|
|
convert_openai_chat_completion_choice,
|
|
convert_openai_chat_completion_stream,
|
|
convert_tooldef_to_openai_tool,
|
|
get_sampling_options,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
interleaved_content_as_str,
|
|
)
|
|
|
|
logger = get_logger(name=__name__, category="inference")
|
|
|
|
|
|
class LiteLLMOpenAIMixin(
|
|
ModelRegistryHelper,
|
|
Inference,
|
|
NeedsRequestProviderData,
|
|
):
|
|
def __init__(self, model_entries, api_key_from_config: str, provider_data_api_key_field: str):
|
|
ModelRegistryHelper.__init__(self, model_entries)
|
|
self.api_key_from_config = api_key_from_config
|
|
self.provider_data_api_key_field = provider_data_api_key_field
|
|
|
|
async def initialize(self):
|
|
pass
|
|
|
|
async def shutdown(self):
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
model_id = self.get_provider_model_id(model.provider_resource_id)
|
|
if model_id is None:
|
|
raise ValueError(f"Unsupported model: {model.provider_resource_id}")
|
|
return model
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
raise NotImplementedError("LiteLLM does not support completion requests")
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
params = await self._get_params(request)
|
|
logger.debug(f"params to litellm (openai compat): {params}")
|
|
# unfortunately, we need to use synchronous litellm.completion here because litellm
|
|
# caches various httpx.client objects in a non-eventloop aware manner
|
|
response = litellm.completion(**params)
|
|
if stream:
|
|
return self._stream_chat_completion(response)
|
|
else:
|
|
return convert_openai_chat_completion_choice(response.choices[0])
|
|
|
|
async def _stream_chat_completion(
|
|
self, response: litellm.ModelResponse
|
|
) -> AsyncIterator[ChatCompletionResponseStreamChunk]:
|
|
async def _stream_generator():
|
|
for chunk in response:
|
|
yield chunk
|
|
|
|
async for chunk in convert_openai_chat_completion_stream(
|
|
_stream_generator(), enable_incremental_tool_calls=True
|
|
):
|
|
yield chunk
|
|
|
|
def _add_additional_properties_recursive(self, schema):
|
|
"""
|
|
Recursively add additionalProperties: False to all object schemas
|
|
"""
|
|
if isinstance(schema, dict):
|
|
if schema.get("type") == "object":
|
|
schema["additionalProperties"] = False
|
|
|
|
# Add required field with all property keys if properties exist
|
|
if "properties" in schema and schema["properties"]:
|
|
schema["required"] = list(schema["properties"].keys())
|
|
|
|
if "properties" in schema:
|
|
for prop_schema in schema["properties"].values():
|
|
self._add_additional_properties_recursive(prop_schema)
|
|
|
|
for key in ["anyOf", "allOf", "oneOf"]:
|
|
if key in schema:
|
|
for sub_schema in schema[key]:
|
|
self._add_additional_properties_recursive(sub_schema)
|
|
|
|
if "not" in schema:
|
|
self._add_additional_properties_recursive(schema["not"])
|
|
|
|
# Handle $defs/$ref
|
|
if "$defs" in schema:
|
|
for def_schema in schema["$defs"].values():
|
|
self._add_additional_properties_recursive(def_schema)
|
|
|
|
return schema
|
|
|
|
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
|
input_dict = {}
|
|
|
|
input_dict["messages"] = [await convert_message_to_openai_dict_new(m) for m in request.messages]
|
|
if fmt := request.response_format:
|
|
if not isinstance(fmt, JsonSchemaResponseFormat):
|
|
raise ValueError(
|
|
f"Unsupported response format: {type(fmt)}. Only JsonSchemaResponseFormat is supported."
|
|
)
|
|
|
|
fmt = fmt.json_schema
|
|
name = fmt["title"]
|
|
del fmt["title"]
|
|
fmt["additionalProperties"] = False
|
|
|
|
# Apply additionalProperties: False recursively to all objects
|
|
fmt = self._add_additional_properties_recursive(fmt)
|
|
|
|
input_dict["response_format"] = {
|
|
"type": "json_schema",
|
|
"json_schema": {
|
|
"name": name,
|
|
"schema": fmt,
|
|
"strict": True,
|
|
},
|
|
}
|
|
if request.tools:
|
|
input_dict["tools"] = [convert_tooldef_to_openai_tool(tool) for tool in request.tools]
|
|
if request.tool_config.tool_choice:
|
|
input_dict["tool_choice"] = request.tool_config.tool_choice.value
|
|
|
|
provider_data = self.get_request_provider_data()
|
|
key_field = self.provider_data_api_key_field
|
|
if provider_data and getattr(provider_data, key_field, None):
|
|
api_key = getattr(provider_data, key_field)
|
|
else:
|
|
api_key = self.api_key_from_config
|
|
|
|
return {
|
|
"model": request.model,
|
|
"api_key": api_key,
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**get_sampling_options(request.sampling_params),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
response = litellm.embedding(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_content_as_str(content) for content in contents],
|
|
)
|
|
|
|
embeddings = [data["embedding"] for data in response["data"]]
|
|
return EmbeddingsResponse(embeddings=embeddings)
|