llama-stack/llama_stack/providers/tests/inference/fixtures.py
2024-11-04 20:30:46 -08:00

125 lines
3.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.adapters.inference.fireworks import FireworksImplConfig
from llama_stack.providers.adapters.inference.ollama import OllamaImplConfig
from llama_stack.providers.adapters.inference.together import TogetherImplConfig
from llama_stack.providers.impls.meta_reference.inference import (
MetaReferenceInferenceConfig,
)
from llama_stack.providers.tests.resolver import resolve_impls_for_test_v2
from ..conftest import ProviderFixture, remote_stack_fixture
from ..env import get_env_or_fail
@pytest.fixture(scope="session")
def inference_model(request):
if hasattr(request, "param"):
return request.param
return request.config.getoption("--inference-model", None)
@pytest.fixture(scope="session")
def inference_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def inference_meta_reference(inference_model) -> ProviderFixture:
inference_model = (
[inference_model] if isinstance(inference_model, str) else inference_model
)
return ProviderFixture(
providers=[
Provider(
provider_id=f"meta-reference-{i}",
provider_type="meta-reference",
config=MetaReferenceInferenceConfig(
model=m,
max_seq_len=4096,
create_distributed_process_group=False,
checkpoint_dir=os.getenv("MODEL_CHECKPOINT_DIR", None),
).model_dump(),
)
for i, m in enumerate(inference_model)
]
)
@pytest.fixture(scope="session")
def inference_ollama(inference_model) -> ProviderFixture:
inference_model = (
[inference_model] if isinstance(inference_model, str) else inference_model
)
if "Llama3.1-8B-Instruct" in inference_model:
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
return ProviderFixture(
providers=[
Provider(
provider_id="ollama",
provider_type="remote::ollama",
config=OllamaImplConfig(
host="localhost", port=os.getenv("OLLAMA_PORT", 11434)
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_fireworks() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="fireworks",
provider_type="remote::fireworks",
config=FireworksImplConfig(
api_key=get_env_or_fail("FIREWORKS_API_KEY"),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_together() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="together",
provider_type="remote::together",
config=TogetherImplConfig().model_dump(),
)
],
provider_data=dict(
together_api_key=get_env_or_fail("TOGETHER_API_KEY"),
),
)
INFERENCE_FIXTURES = ["meta_reference", "ollama", "fireworks", "together", "remote"]
@pytest_asyncio.fixture(scope="session")
async def inference_stack(request):
fixture_name = request.param
inference_fixture = request.getfixturevalue(f"inference_{fixture_name}")
impls = await resolve_impls_for_test_v2(
[Api.inference],
{"inference": inference_fixture.providers},
inference_fixture.provider_data,
)
return (impls[Api.inference], impls[Api.models])